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Abstract In this project, Positional number systems can be effectively replaced by residue 

number systems (RNSs), which offer quick and power-efficient computational systems. The 

RNS's energy efficiency is a vital aspect that helps current embedded systems and Internet-of-

things (IoT) edge devices. The most significant and commonly used operation on RNS 

components, such as the forward and reverse converters and the arithmetic units in the channels, 

is modular addition. The use of thermometer coding (TC) and onehot coding (OHC) is feasible 

due to the small and medium dynamic range needs of low power embedded and edge devices. 

This lowers power consumption and improves the energy efficiency of modulo addition when 

compared to normal binary representations. This project proposes two novel energy-efficient 

modular adders that are also highly performing because of the carry-free internal computations, 

based on these methodologies. Comparing the suggested modular adders based on the TC and 

OHC to the related state of the art, the improvements are on average 38% and 34.5% for the 

delay, 27% and 14.5% for the circuit area, 29.5% and 6.3% for energy consumption, and roughly 

54.9% and 44.2% for the area-delay product (ADP), respectively and this design can be 

implemented on Xilinx Vivado on FPGA Simulator. 

 

Keywords: One Hot Codings,5G Communications, FPGA, Verilog HDL, Thermometer coding 

for Encoding Deocders. 

 

I.INTRODUCTION 

 

Modern digital signal processing (DSP) systems [1] require improved energy efficiency, namely, 

for emerging applications such as deep learning [2] and Internet-of-Things (IoT) [3]. 

Unconventional number systems and arithmetic have been investigated recently to achieve 

specialized efficient embedded systems for those applications [1]. Residue number systems 

(RNSs) [4] have been used for DSP [5] and cryptography [6], supporting highspeed, low-power, 

and fault-tolerant computations. Mapping weighted number representations into residues and 

vice versa, i.e., forward and reverse conversion, are essential but complex intermodulo 

operations. However, RNS arithmetic operations, such as additions and multiplications, are 

performed much more frequently than forward and reverse conversions [1]. Therefore, efficient 

modular adders are essential to achieve RNS-based high-performance and highly efficient 

embedded computing systems. 

One way to increase the efficiency of modular arithmetic units, i.e., modulo adders, subtractors, 

and multipliers, is by using the one-hot coding (OHC) [7]–[9]. The one-hot residue (OHR) has 

been considered for designing RNS modular arithmetic circuits based on circular shifting [10]. 

The OHC circuits based on barrel shifters show a power-delay product (PDP) reduction of up to 

85% in comparison to the conventional positional encoding, because they significantly reduce 
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the circuit’s activity factor [10]. RNSs based on OHC have also been used on DSP applications 

due to their high speed [9], [11]. Alternatively, there are other types of coding, such as the 

thermometer coding (TC) [12] that can be applied to enhance the performance of RNS modular 

arithmetic. The thermometer is the unary coding, in which the number of 1’s corresponds to the 

magnitude of the displayed number. This means that the Hamming distance between numbers 

represented in TC has a linear relationship to its difference [12]. This type of coding is a subclass 

of Golomb coding’s [13] used in a variety of applications, including neural networks and data 

compression [13], [14]. Moreover, the TC together with distributed arithmetic can lead to fast 

implementations of modular arithmetic circuits [15], [16]. 

With existent analog-to-digital converters (ADCs) that directly convert analog inputs to residues 

encoded in the TC format [17], engineers and researchers are increasingly interested in modular 

adders for TC [18]. Since there is no carry propagation in the modular addition of two TC 

numbers, the addition of small moduli can be done faster when compared to designs for 

positional representations (apart from moduli like 2n). Moreover, the usage of the TC format to 

represent residues removes the need for forward converters, whenever inputs values are coded 

using analog-toresidue converters [17]. Similarly, modular adders based on OHC operate in a 

carry free manner [19], having a simple structure for different moduli. To set up efficient RNS 

systems with TC or OHC, small moduli should be selected. This makes this approach more 

suitable to a class of applications that includes low power embedded and IoT edge devices, 

where a small dynamic range is required [1]. For applications requiring larger dynamic ranges, 

sets with a higher number of moduli should be selected, while also possibly including a modulo 

2n channel exploiting binary representations. 

This project creates new efficient structures for designing modular adders based on OHC and 

TC. The proposed adders are designed using novel digital circuits supported on specific features 

of OHC and TC. In comparison to previous works [18], [19], which proposed adders based on 

shifting and were implemented using many multiplexers (MUXs), the herein proposed adders 

have significant practical experimental improvements regarding the latency, area, and energy 

consumption. 

 

2.LITERATURE SURVEY 

 

A. Residue Number Systems : 

 

An RNS supported on a moduli-set of n pairwise relatively prime numbers {m1, m2,..., mn} 

allows for the integers in [0, M − 1], with M = m1 × m2 × ... × mn, to be uniquely represented by 

their remainders modulo m1, m2,..., mn. A forward conversion maps the binary weighted 

representation of a number X onto the residues (x1, x2,..., xn) associated with the moduli in the 

set xi = |X|mi = |X M B−1 ... X1X0|mi, i = 1 ... n (1) where M B =  log2 mi [4]. Considering two 

RNS numbers A and B A = (a1, a2,..., an) (2) B = (b1, b2,..., bn). (3) The modular addition of 

these two RNS numbers can be performed as follows [20]: S = A + B = (s1,s2,...,sn) (4) with si = 

|ai + bi|mi =  ai + bi, if ai + bi < mi ai + bi − mi, if ai + bi ≥ mi . (5) The reverse conversion maps 

the residues in the RNS domain (x1, x2,..., xn) into their equivalent weighted binary 

representations, using a method like the mixed-radix conversion (MRC) [4] X = vn n −1 i=1 mi 

+ ... + v3m2m1 + v2m1 + v1 (6). 
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B. Thermometer Coding: 

 

With TC [18], the value of each number is expressed as the number of ones in a string of bits. 

Since, in this coding, no weight is assigned to bit positions, it is not important where the ones are 

placed. However, for simplicity, these 1s are usually placed at one end of the string [18]. As an 

example, the numbers between 0 and 7 are represented as shown in Table I. Table I shows that 

by increasing the range of numbers, the amount of required bits in a TC representation grows at a 

fast pace. Therefore, the TC is not suitable to represent large numbers. Nevertheless, the 

decomposition of numbers in a set of small residues makes TC-based fast circuits suitable for 

RNS. Therefore, combining TC with RNS improves the performance and efficiency of arithmetic 

systems. The application of the thermometer code to RNS residues is herein designated TC for 

RNS (TCR). 

 
In [18], it is stated that the number bits required to represent all the remainders modulo mi are mi 

. However, it should be mentioned that, since the leftmost bit is always zero, these numbers can, 

in fact, be represented with only mi − 1 bits. To perform an addition in TC, one needs to count 

the number of ones in the two operands. If this number is greater than or equal to mi , the sum 

should be decreased by mi . As an example, to add the two numbers A = 001111 and B = 011111 

modulo 7 in TC, since a total of 9 bits take the value of one when considering all the bits of the 

two representations, one removes 7 of them to obtain the result of 000011. 

In order to perform a subtraction in TC, the complement of the subtrahend (B) has to be 

computed and added to the minuend (A). When B is not zero, the complement of B can be easily 

calculated as follows: B¯ = b¯2b¯3b¯4 ... b¯m−1 1, if (B! = 00 ... 0). (8) Herein, as in [18], the 

starting index of the bits is 1, i.e., b1. In other words, the rightmost bit, b1,lets one know whether 

a number is greater than or equal to 0. For instance, if B is equal to 000011 modulo 7, its 

complement, B¯, takes the value of 011111. Moreover, the complement of B = 000000 is also B 

= 000000, which can be easily identified by checking the value of the first bit (b1 = 0). In 

general, the complement of B can be calculated as B¯ = (b¯2 ∧ b1)(b¯3 ∧ b1)...(b¯ m−1 ∧ b1)b1. 

(9) In [18], the number of bits required for the TC representations is considered to be the value of 
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the modulo. In this situation, B¯ can be computed as follows: B¯ = b¯1b¯2b¯3 ... b¯m−1b¯m. 

(10) 

By considering the representation in (10), the complement of zero takes the value of the modulo, 

which does not cause any problem for the modular addition. However, the modular adder 

suggested in this paper only uses m − 1 bits, and thus bm is not used. 

By using the distributed arithmetic approach [21], modular multiplication based on the TC can 

be done using modular adders. Therefore, an efficient structure for designing TC-based modular 

adders plays an important role to enhance the performance of RNS based on TC. Fig. 1 presents 

the TC-based modulo 7 adder architecture proposed in [18]. In this adder, one of the operands is 

converted from the TC to the binary format using a customized decoder, shown as s[1], s[2], and 

s[4] in Fig. 1 (where the indexes indicate the weight of the bit in the binary number system, e.g., 

s[1]+2s[2]+4s[4]). A number of 1s equal to the value of the first operand is added to the second 

operand (b[6] ... b[1]). If the number of 1s in the result exceed m −1, the m initial 1s are removed 

from the final result (r in Fig. 1). 

For example, let us assume that B is equal to 6, represented in the TCR format 111111, and that 

S is equal to 5, represented in the binary format s[1] = 1, s[2] = 0, and s[4] = 1. According to Fig. 

1, the s[1] forces the MUXs in the first level to shift one bit left b, and insert a 1 in the rightmost 

bit. Next, the MUXs in the second level transfer their inputs to the outputs without inserting 1s 

since s[2] = 0 (if s[2] was 1, then two 1s would be added to the right bits). Similarly, the MUXs 

in the third level perform 4-bit left shifting while inserting four 1s into the right bit positions. The 

result of this step is 011111111111 (c signals in Fig. 1). Since, in this example, the modulo is 7, 

c[7] plays a key role in modulo reduction and is used to select the inputs of the MUXs in the last 

level. If c[7] is equal to 1, the result exceeded m − 1, and thus, the value of the modulo should be 

subtracted from the result, i.e., c[8]–c[12] are forwarded to the output. Otherwise, c[7] = 0 and 

c[1]–c[6] will constitute the output (the result is less than the modulo value 7). 

 

C. One-Hot Coding: 

 

The OHC is usually used to address lookup tables (LUTs) and at the output of some linear 

circuits such as FIR filters [17]. K +1 bits are required to represent numbers between 0 and K in 

this coding. With OHC, only one bit takes the value of one and the others are zero. The value of 

the number in this coding is defined by the relative position of the bit with value “1.” Table II 

shows the numbers between 0 and 7 encoded in an OHC. The OHC requires one more bit than 

the TC. When the OHC is used to represent residues in RNS, it is named OHR [21]. The modular 

addition of two numbers A and B in this type of coding can be computed with shifts. To perform 

an addition, one operand should be circularly shifted a number of positions defined by the other 

operand. To perform (A − B) mod m, the complement of B should be added to A. The 

complement of B modulo m corresponds to B¯ = b1b2b3 ... bm−1b0 (11) where bits are indexed 

from 0 to m − 1. As an example, the complement of 2 (0000100) modulo 7 is 5 (0100000), and 

the complement of 0 is zero. It is easily observed that B¯ is calculated without inverters, by 

reordering the bits. 
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Fig. 1. Modulo-7 TCR-based adder 

 
Fig. 2. OHR-based modulo-7 adder. 

Fig. 2 presents an OHR modulo 7 adder [19]. The second operand, i.e., B, is in binary format, 

represented by b[2]b[1]b[0] in Fig. 2. These bits operate as selectors for the MUXs at the 

different levels. Modular addition for OHC is performed by just circularly left shifting one of the 
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operands a number of positions given by the value of the other. In Fig. 2, the operand A is 

circularly left shifted according to the value of B. Since B is in the binary format, if b0 = 1, then 

A will be one bit circularly shifted to the left. Similarly, if b1 and b2 are equal to 1, then a will be 

shifted left two and four positions, corresponding to the weights of the bits, respectively. 

 

 

 II.EXISTING SYSTEM AND PROPOSED SYSTEM 

EXISTING METHOD 

 

The OHC is usually used to address lookup tables (LUTs) and at the output of some linear 

circuits such as FIR filters [17]. K +1 bits are required to represent numbers between 0 and K in 

this coding. With OHC, only one bit takes the value of one and the others are zero. The value of 

the number in this coding is defined by the relative position of the bit with value “1.” Table II 

shows the numbers between 0 and 7 encoded in an OHC. The OHC requires one more bit than 

the TC. When the OHC is used to represent residues in RNS, it is named OHR [21]. The modular 

addition of two numbers A and B in this type of coding can be computed with shifts. To perform 

an addition, one operand should be circularly shifted a number of positions defined by the other 

operand. To perform (A − B) mod m, the complement of B should be added to A. The 

complement of B modulo m corresponds to B¯ = b1b2b3 ... bm−1b0 (11) where bits are indexed 

from 0 to m − 1. As an example, the complement of 2 (0000100) modulo 7 is 5 (0100000), and 

the complement of 0 is zero. It is easily observed that B¯ is calculated without inverters, by 

reordering the bits. 
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Fig. 1. Modulo-7 TCR-based adder 

 
Fig. 2. OHR-based modulo-7 adder. 

 

Fig. 2 presents an OHR modulo 7 adder [19]. The second operand, i.e., B, is in binary format, 

represented by b[2]b[1]b[0] in Fig. 2. These bits operate as selectors for the MUXs at the 

different levels. Modular addition for OHC is performed by just circularly left shifting one of the 

operands several positions given by the value of the other. In Fig. 2, the operand A is circularly 

left shifted according to the value of B. Since B is in the binary format, if b0 = 1, then A will be 

one bit circularly shifted to the left. Similarly, if b1 and b2 are equal to 1, then a will be shifted 

left two and four positions, corresponding to the weights of the bits, respectively. 

 

2.PROPOSED SYSTEM 

 

The proposed designs for OHR- and TCR-based modular adders are presented here. The 

proposed hardware structures for modular addition require less circuit area and less delay in 

comparison to the state of the art. 
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An important aspect to apply the proposed method to add two modulo m residues(0 ≤ A, B < m) 

represented in TCR is to identify whether A + B >= m or not. With this aim, to m in the 

following situations:  A + B < m, if k = 0 A + B = m, if k = 1 A + B > m, if k > 1. (21) 

Therefore, one just needs to apply the OR operation to all the outputs of the bitwise AND 

operation to check whether at least one of these outputs is 1 (meaning that the sum is equal to or 

greater than m) or all of them are 0 (meaning that the sum will be less than the modulo). Hence, 

(20) can be rewritten as A ∧ B reverse = (am−1∧b1)...(a2∧bm−2)(a1∧bm−1). (22) To detect the 

existence of at least a bit 1 among the resulting bits in (22), the following formulation can be 

adopted: cl = (am−1 ∧ b1) ∨ ... ∨ (a2 ∧ bm−2) ∨ (a1 ∧ bm−1). (23) 

Hence, (13) is achieved, i.e., cl = 1 and cl = 0 mean that A + B ≥ m and A + B < m, respectively. 

Equation (20) can also be used to obtain the result of the modular addition whenever A + B ≥ m. 

k determines the number of 1s that are in excess of the m − 1 bits. Since the sum of the regular 

addition of A and B has to be reduced by m, this can be achieved by considering the overlapping 

1 bits minus one as the result is 

 
When k = 1, A + B is equal to the modulo m. The number of bits with the value 1 in (22) is equal 

to the number of 1s of the modular addition plus one. There is no situation where two 

nonsequential bits in (22) become one, whereas between them there are bits with the zero value. 

Therefore, the correct modular addition for k = 1 is 0. For the other cases, wherein k > 1, just 

k−1 1s should be placed in the final TCR sum. Hence, the number of overlapping 1 bits in (22) 

should be counted using the formula m−1 i=1 ai ∧ bm−i , and then decreased by one to achieve 

the final sum, corresponding to SUM1 in (14). 

For the case A + B < m, the number of bits with the zero value is the key for performing the 

modular addition. As in the previous condition, the bit-reversed representation of B is considered 

and, on the top of that, the bitwise OR operation with A is applied is 
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A Ternary Carry Ripple (TCR) modulo-7 adder is a digital circuit that performs addition in 

ternary (base-3) arithmetic and outputs the result modulo-7. In ternary addition, each digit can 

take one of three values: 0, 1, or 2. The modulo-7 operation ensures that the result stays within 

the range of 0 to 6. 

Here's a simple TCR-based modulo-7 adder using a ripple carry mechanism: 

Ternary Carry Ripple Modulo-7 Adder: 

Input Digits (A, B): 

The input digits are ternary digits, and in this example, let's use A and B as the two ternary 

numbers to be added. 

Ternary Full Adder: 

Design a ternary full adder that takes two ternary inputs (A and B) along with a ternary carry-in 

(Cin). The full adder produces a ternary sum (S) and a ternary carry-out (Cout). 

Ripple Carry Mechanism: 

Connect multiple instances of the ternary full adder in a ripple carry configuration. The carry-out 

from each stage is fed as the carry-in to the next stage. 

Modulo-7 Operation: 

After obtaining the sum from the last stage of the adder, apply the modulo-7 operation to ensure 

that the result is within the range of 0 to 6. 

Output: 

The output of the TCR-based modulo-7 adder is the modulo-7 sum of the input ternary digits. 

Ternary Full Adder Logic: 

The logic for a ternary full adder is more complex than a binary full adder due to the additional 

ternary digit values. Here's a simplified representation of the logic for a ternary full adder: 

Inputs: A, B, Cin (Ternary inputs) 

Outputs: S, Cout (Ternary sum and carry-out) 

S = (A + B + Cin) % 3   // Ternary addition with modulo-3 operation 

Cout = (A + B + Cin) / 3   // Ternary division (carry-out) 

Example: 

Let's consider an example where A = 201 (in ternary) and B = 110 (in ternary): 

Ternary Addition: 

Use the ternary full adder to perform the addition, considering the ternary carry-in from the 

previous stage (initial carry-in is 0): 

     201 

  + 110 

  ------ 

    0210   (Ternary sum) 

Ripple Carry: 

Propagate the carry from one stage to the next in a ripple carry fashion. 

Modulo-7 Operation: 

Apply the modulo-7 operation to the final sum: 

0210 (Ternary sum) mod 7 = 6 

So, the result of adding 201 and 110 in ternary and taking the modulo-7 is 6. 
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III. RESULTS AND ANALYSIS DISCUSSION 

 

 
FIG.1.SIMULATION OUTPUT 

 
FIG.2.OUTPUT 

 
FIG3.RTL SCHEMATIC DIAGRAM 

 
FIG.4.SYNTHESIS DESIGN 
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FIG.5.UTILIZATION OF LUTs AND FFs 

 
FIG.6.TIMING REPORT 

 
FIG.7.POWER REPORT 

CONCLUSION 

In this project, two new classes of efficient modular adders are proposed for TC and OHC. The 

main advantages of the proposed adders are their high performance and low cost, making them 

useful, for example, for RNSs based on small moduli sets, used for DSP embedded systems and 

IoT. For the first time, the conventional MUX-based design of OHC and TC adders is replaced 

by a novel approach based on a small number of logical gates. Since TC and OHC modular 

adders do not require carry propagation, their structures for small moduli become simpler and 

more efficient and have lower delay than binary modular adders (except for moduli with the 

shape of 2n). Performance analyses and experimental results have shown the significant impact 
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of these improvements. Moreover, the formulation and architectures introduced in this paper are 

easily extended to design other units for modular arithmetic, such as subtractors. 
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