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Abstract In this project, Hardware, power consumption, and speed of ternary content-

addressable memory (TCAMs) based on field-programmable gate arrays (FPGAs) are always 

changing. These emulated TCAMs' low update latency is one drawback. Conventional FPGA-

based TCAMs, where N is the TCAM depth, have an update-latency of N clock cycles as 

opposed to a lookup-latency of one clock cycle. Afterwards, the update-latency is reduced to t 

clock cycles, where t is the quantity of bits that don't matter. This project introduced two FPGA-

based TCAM updating techniques that were effectively implemented on Xilinx Vivado FPGA: 

an economical LUT-Update mechanism and an expedited MUX-Update mechanism. W is the 

width of the TCAM, and MUX-Update uses just three input/output (I/O) pins to produce an 

update-latency of W+1 clock cycles. Using W I/O pins, LUT-Update produces a consistent 

update-latency of 2 clock cycles, regardless of TCAM size. 
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I.INTRODUCTION 

 

Content-addressable memory (CAM) returns the position of given search input in a single clock 

cycle [1]. The stored bits classify CAM into binary CAM (BCAM) and ternary CAM (TCAM). 

BCAM stores ‘1’ and ‘0’ while TCAM can store ‘1’, ‘0’ as well as ‘X’ (a don’t care) bit. CAMs 

are implemented in many applications, such as networking, signal processing, pattern 

recognition, access control lists, and translation lookaside buffers (TLB) in microprocessors. 

Field-programmable gate arrays (FPGAs) are becoming popular because of its massive hardware 

parallelism, softwarelike reconfigurability, and rapid prototyping. FPGAs are enriched with 

hardware resources, such as dedicated block random-access memory (BRAM), multiplexers, and 

so forth. FPGA-based CAM utilizes these components to emulate content-based memory [2], [3]. 

They have near to one clock cycle search-latency (lookup-latency), but the update-latency is very 

high, which is unable to form a balanced system in which the update and search operation can 

happen at nearly the same speed.To exploit the bandwidth of high-performance systems, 

updating of memory with new data should be done at a considerable speed. The update-latency 

of a typical FPGAbased CAM is O(2N) [4]. The architecture in [5] reduces it to O(N) where N is 

the number of CAM words. It is further reduced to O(N/k) in [6], where k is a factor depending 

on the number of groups of stored words. Still, update-latency is high and varying, compared to 

the low (one clock cycle) and fixed search-latency of FPGA-based CAMs. 

In applications such as networking, the update of the CAM table is very frequent, which should 

be fast enough to reach the search speed of CAM to achieve high bandwidth. The performance of 

FPGA-based CAMs degrades with increasing clock cycles of update-latency, which depends on 
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the number of stored words in the existing architectures [7]. The data packets arriving at a node 

in IP networking need to be buffered due to the slow updates to avoid packet loss [8], [9]. Thus, 

slow updates cause an extra overhead on the system in the form of a large buffer, which is saved 

if the update process is accelerated. In this letter, we proposed two update mechanisms, MUX-

Update and LUT-Update, which update the TCAM in fewer clock cycles and in a cost-effective 

way than the available FPGA-based CAM’s updating procedures [5], [6], [10].  

Key contributions of the proposed work are: 

Two mechanisms for updating FPGA-based TCAM are proposed. MUX-Update saves the 

Input/Output (I/O) pins at the cost of extra clock cycles, while LUT-Update efficiently updates 

TCAM at the expense of additional I/O pins. • G-AETCAM [11] supports only static lookup 

tables in its original form. Our proposed update mechanisms enable G-AETCAM to update the 

TCAM entries during runtime. • The available update mechanisms for FPGA-based TCAMs 

increase with the size of TCAM [6], [5], while our proposed technique (MUX-Update) has an 

update latency of fixed two clock cycles. • I/O pins, which is a critical constraint in the FPGA 

design process, are reduced by introducing a simple multiplexer in the TCAM design. 

2.LITERATURE 

SRAM-based memory designs using brute force approach are unable to be implemented on 

FPGA due to its huge resource requirement [4]. The increase of one bit per CAM width doubles 

the hardware resource requirement on FPGA [7]. Later these emulated CAM architectures based 

on SRAM cells were re-designed using partitioning of the TCAM table to implement on limited 

resources of FPGA [12], [13]. 

HP-TCAM arranges the SRAM cells into sub-blocks and stored TCAM bits in such a way that it 

becomes implementable on the SRAM blocks inside FPGA [12]. REST [7] further reduced the 

hardware resource requirement compared to HP-TCAM, but one disadvantage of these FPGA-

based CAMs is its high update-latency, which reduces the overall system efficiency. 

F. Syed et al. discussed an update mechanism for TCAM, especially the HP-TCAM, to update 

one word in N clock cycles [5]. It requires less than N clock cycles if there are some words with 

no ternary (don’t care) bits, but in worst case, update-latency remains N clock cycles where N is 

the number of CAM words. 

Wang et al. [10] divides the TCAM table into high and low priority blocks, and shows 

improvement in the update process. Worst-case update-latency remains N clock cycles, where N 

is the total number of locations in TCAM. In one of our proposed update mechanisms (MUX-

Update), introduction of a multiplexer (MUX) into the system reduces the hardware cost (I/Os) 

to almost half of the previously used hardware. Mishra et al. [14] proposed a design based on 

leaf TCAM and interior TCAM, which increases the complexity of the algorithm, and involves 

hardware overhead in the form of storing filters. 

Xuan et al. presented an update mechanism in [6] which reduced the update-latency by a factor 

k, from O(N) to O(N/k) by centralized erasing technique, where k is the number of chunks 

transfer via data bus. TCAM cannot benefit from this technique and is only applicable to binary 
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CAM architecture, while our proposed techniques are to update FPGA-based binary as well as 

ternary CAM and provides low updatelatency with reduced hardware cost. Gate-based ternary 

CAM (G-TCAM) [11] is a logical FPGA-based CAM implemented on FPGA with improved 

hardware resources from previous TCAM architectures.  

II.EXISTING SYSTEM AND PROPOSED SYSTEM 

1.EXISTING SYSTEM: TCAM ARCHITECTURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Simplified N×W G-AETCAM FOR N is depth of TCAM and W is width of TCAM). 

 

TCAM architecture used to apply our proposed update mechanisms is a gate-based TCAM (G-

AETCAM) implemented on flip-flops (FFs) as memory and gates as logical blocks of FPGA. To 

the best of our knowledge, G-AETCAM is the most efficient FPGA-based TCAM architecture 

which uses less logical resources than the available TCAM architectures. It consists of G-

AETCAM cells that are capable of handling ‘masking bits’ and ‘storing bits’ to store TCAM 

bits, as shown in Fig. 1. FFs are used as storage media, which are also referred to as register file 

inside FPGAs. An N×W G-AETCAM architecture supports only static lookup tables and cannot 

be updated at runtime. This makes it inefficient for practical applications where the TCAM 

entries update dynamically. Our proposed designs enable G-AETCAM to dynamically update its 

entries during runtime. Two update mechanisms based on the availability of hardware resources 

are proposed in this work to achieve the comprehensive benefits of G-AETCAM in terms of 

integrating it with practical applications. 

Designing a Ternary Content-Addressable Memory (TCAM) based on FPGA (Field-

Programmable Gate Array) involves creating a hardware implementation that leverages the 

reconfigurability and parallel processing capabilities of FPGAs. Below are the general steps 

involved in implementing TCAM on an FPGA: 

1. Define TCAM Requirements: 

Clearly define the requirements of the TCAM, including the number of entries, bit width, and the 

ability to store ternary values (0, 1, and "don't care"). 

2. FPGA Architecture Selection: 

Choose an FPGA with sufficient resources (look-up tables, flip-flops, and memory blocks) to 

accommodate the TCAM design. The FPGA should also support the required I/O standards and 

clock frequencies. 
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3. Create TCAM Core: 

Develop a custom TCAM core that consists of ternary memory cells and associated control logic. 

Each memory cell should be capable of storing ternary values and support parallel search 

operations. 

4. Parallel Search Mechanism: 

Implement a parallel search mechanism within the TCAM core. This involves designing the 

logic to simultaneously compare input search keys with multiple entries in parallel. 

5. Memory Storage Implementation: 

Implement the storage of ternary values in memory cells. You may use dedicated memory blocks 

on the FPGA or a combination of lookup tables and flip-flops to store the TCAM entries. 

6. Write and Read Operations: 

Develop the logic for write and read operations to allow the programming of TCAM entries and 

the retrieval of matching entries based on input search keys. 

7. Interface Integration: 

Integrate the TCAM core with other components of the FPGA design. This includes interfaces 

for external communication, such as input and output ports, and any necessary control and 

configuration interfaces. 

8. Clock Domain Considerations: 

Manage clock domains appropriately to ensure synchronization and avoid potential issues related 

to clock domain crossings. 

9. Testing and Verification: 

Implement comprehensive testbenches and verification procedures to ensure the correct 

functionality of the TCAM design under various conditions. FPGA simulation tools and 

hardware testing can be used for verification. 

10. Synthesis and Implementation: 

Use FPGA synthesis tools provided by the FPGA vendor to convert the hardware description 

(e.g., written in Verilog or VHDL) into a bitstream that can be programmed onto the FPGA. 

11. Optimization: 

Optimize the TCAM design for area, speed, and power consumption. FPGA tools often provide 

optimization options to achieve better performance. 

12. Integration into Larger Systems: 

Integrate the TCAM design into the larger FPGA-based system. This may involve additional 

interfaces, interconnects, and coordination with other FPGA components. 

13. Deployment and Iteration: 

Program the synthesized bitstream onto the FPGA and deploy the system. Iterate through the 

design process as needed to address any issues or make improvements. 

 

2.PROPOSED SYSTEM 

A. Proposed MUX-Update Mechanism

 
Fig. 2 shows the proposed architecture for MUX-Update mechanism to update the TCAM. 
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 It enables the TCAM to update an entry in fixed two clock cycles. The first clock cycle is to 

store the “storing bits” of G-AETCAM at even bit positions of each word location while the 

second clock cycle is to save the “masking bits” of G-AETCAM at odd bit positions of each 

word location. The even/odd positions are used to reduce the I/O pins to half because of the 

limited resources on FPGA. 

The select line of 1-to-2 DMUX for storing bits is ‘0’, which for masking bits is ‘1’ as shown in 

Fig 2. MUX Update mechanism updates the TCAM word in two clock cycles represented by line 

# 4 and 8 in Algorithm 1. 

 

B. Proposed LUT-Update Mechanism

 

Fig. 3 shows the proposed architecture for LUT-Update mechanism which updates the TCAM in W+1 clock cycles, 

where W is the width of TCAM. Bit-Select-Memory (BSM) consists of two 3-input LUTs which outputs the 

appropriate value to the input of MUX for 0, 1 and X bits of TCAM, using I0, I1 and Ix input pins, respectively. For 

instance, an entry “10X1” needs to update in TCAM as highlighted in Fig. 3. The BSM stores “01”, “00”, “10”, and 
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“01” in 8-bit BR (buffer register) which is transferred to the corresponding location of TCAM in next clock cycle. 

The update-latency, in this case, is five clock cycles, where W is 4. For a 36-bit word, this process is repeated 36 

times to fill the BR with storing & masking bit. In the next clock cycle, the content of BR transfers to the TCAM 

location, which is represented by line # 7 in Algo. 2. 

The Switch statement in Algo. 2 handles different input values of BSM. One of the three cases is selected to provide 

input values to two demultiplexers (DMUXes) for the corresponding location of BR. The number of iterations in the 

for loop is dependent on the width of TCAM memory. 

 

III. RESULTS AND ANALYSIS DISCUSSION 

 

FIG1.TACM SIMULATION OUTPUT 
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FIG2.OUTPUT OF TCAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG3.RTL SCHEMATIC OF TCAM. 
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FIG.4.SYNTHESIS DESIGN OF TCAM 
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FIG.5.UTILIZATION OF LUTS REPORT 

 

FIG.6.POWER REPORT OF TCAM. 

 

FIG.7.TIMING REPORT OF TCAM 
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CONCLUSION 

Longer update-latency of TCAM affects the efficiency of searching-based systems, e.g., 

software-defined networks (SDN) on FPGAs. Our proposed techniques enable FPGAbased 

TCAM architecture to update the TCAM entries at lower update-latency and in a cost-effective 

way in terms of I/O pins usage. 

In conclusion, Ternary Content Addressable Memory (TCAM) stands as a pivotal technology in 

the realm of computing and networking, offering unparalleled capabilities in fast and efficient 

data searching. Its unique ability to perform content-based searches in a single clock cycle has 

made it indispensable in a variety of applications, ranging from network routing and security to 

telecommunications and storage systems. 
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