
 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

50

Design and Implementation of Mechanisms for Faster Updates in

FPGA-based Ternary Content-addressable Memory

Dr.A.Ranganayakulu1 Mr.D.Satyanarayana2 M.Venkata Sahithi3 Yeluri Sai Bhanu4 Vangepurapu

Shainyunaisy5 Yeruva Sujatha6
1,2 Krishna Chaithanya Institute Of Technology & Sciences, Ece Department, Markapur, Andhra Pradesh.

3,4,5,6, Krishna Chaithanya Institute Of Technology & Sciences, UG Student-ECE, Markapur, Andhra Pradesh.

Abstract In this project, Hardware, power consumption, and speed of ternary content-

addressable memory (TCAMs) based on field-programmable gate arrays (FPGAs) are always

changing. These emulated TCAMs' low update latency is one drawback. Conventional FPGA-

based TCAMs, where N is the TCAM depth, have an update-latency of N clock cycles as

opposed to a lookup-latency of one clock cycle. Afterwards, the update-latency is reduced to t

clock cycles, where t is the quantity of bits that don't matter. This project introduced two FPGA-

based TCAM updating techniques that were effectively implemented on Xilinx Vivado FPGA:

an economical LUT-Update mechanism and an expedited MUX-Update mechanism. W is the

width of the TCAM, and MUX-Update uses just three input/output (I/O) pins to produce an

update-latency of W+1 clock cycles. Using W I/O pins, LUT-Update produces a consistent

update-latency of 2 clock cycles, regardless of TCAM size.

Keywords: LUT(Look Up Table),5G Communications, FPGA, Verilog HDL, T-CAM.

I.INTRODUCTION

Content-addressable memory (CAM) returns the position of given search input in a single clock

cycle [1]. The stored bits classify CAM into binary CAM (BCAM) and ternary CAM (TCAM).

BCAM stores ‘1’ and ‘0’ while TCAM can store ‘1’, ‘0’ as well as ‘X’ (a don’t care) bit. CAMs

are implemented in many applications, such as networking, signal processing, pattern

recognition, access control lists, and translation lookaside buffers (TLB) in microprocessors.

Field-programmable gate arrays (FPGAs) are becoming popular because of its massive hardware

parallelism, softwarelike reconfigurability, and rapid prototyping. FPGAs are enriched with

hardware resources, such as dedicated block random-access memory (BRAM), multiplexers, and

so forth. FPGA-based CAM utilizes these components to emulate content-based memory [2], [3].

They have near to one clock cycle search-latency (lookup-latency), but the update-latency is very

high, which is unable to form a balanced system in which the update and search operation can

happen at nearly the same speed.To exploit the bandwidth of high-performance systems,

updating of memory with new data should be done at a considerable speed. The update-latency

of a typical FPGAbased CAM is O(2N) [4]. The architecture in [5] reduces it to O(N) where N is

the number of CAM words. It is further reduced to O(N/k) in [6], where k is a factor depending

on the number of groups of stored words. Still, update-latency is high and varying, compared to

the low (one clock cycle) and fixed search-latency of FPGA-based CAMs.

In applications such as networking, the update of the CAM table is very frequent, which should

be fast enough to reach the search speed of CAM to achieve high bandwidth. The performance of

FPGA-based CAMs degrades with increasing clock cycles of update-latency, which depends on

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

51

the number of stored words in the existing architectures [7]. The data packets arriving at a node

in IP networking need to be buffered due to the slow updates to avoid packet loss [8], [9]. Thus,

slow updates cause an extra overhead on the system in the form of a large buffer, which is saved

if the update process is accelerated. In this letter, we proposed two update mechanisms, MUX-

Update and LUT-Update, which update the TCAM in fewer clock cycles and in a cost-effective

way than the available FPGA-based CAM’s updating procedures [5], [6], [10].

Key contributions of the proposed work are:

Two mechanisms for updating FPGA-based TCAM are proposed. MUX-Update saves the

Input/Output (I/O) pins at the cost of extra clock cycles, while LUT-Update efficiently updates

TCAM at the expense of additional I/O pins. • G-AETCAM [11] supports only static lookup

tables in its original form. Our proposed update mechanisms enable G-AETCAM to update the

TCAM entries during runtime. • The available update mechanisms for FPGA-based TCAMs

increase with the size of TCAM [6], [5], while our proposed technique (MUX-Update) has an

update latency of fixed two clock cycles. • I/O pins, which is a critical constraint in the FPGA

design process, are reduced by introducing a simple multiplexer in the TCAM design.

2.LITERATURE

SRAM-based memory designs using brute force approach are unable to be implemented on

FPGA due to its huge resource requirement [4]. The increase of one bit per CAM width doubles

the hardware resource requirement on FPGA [7]. Later these emulated CAM architectures based

on SRAM cells were re-designed using partitioning of the TCAM table to implement on limited

resources of FPGA [12], [13].

HP-TCAM arranges the SRAM cells into sub-blocks and stored TCAM bits in such a way that it

becomes implementable on the SRAM blocks inside FPGA [12]. REST [7] further reduced the

hardware resource requirement compared to HP-TCAM, but one disadvantage of these FPGA-

based CAMs is its high update-latency, which reduces the overall system efficiency.

F. Syed et al. discussed an update mechanism for TCAM, especially the HP-TCAM, to update

one word in N clock cycles [5]. It requires less than N clock cycles if there are some words with

no ternary (don’t care) bits, but in worst case, update-latency remains N clock cycles where N is

the number of CAM words.

Wang et al. [10] divides the TCAM table into high and low priority blocks, and shows

improvement in the update process. Worst-case update-latency remains N clock cycles, where N

is the total number of locations in TCAM. In one of our proposed update mechanisms (MUX-

Update), introduction of a multiplexer (MUX) into the system reduces the hardware cost (I/Os)

to almost half of the previously used hardware. Mishra et al. [14] proposed a design based on

leaf TCAM and interior TCAM, which increases the complexity of the algorithm, and involves

hardware overhead in the form of storing filters.

Xuan et al. presented an update mechanism in [6] which reduced the update-latency by a factor

k, from O(N) to O(N/k) by centralized erasing technique, where k is the number of chunks

transfer via data bus. TCAM cannot benefit from this technique and is only applicable to binary

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

52

CAM architecture, while our proposed techniques are to update FPGA-based binary as well as

ternary CAM and provides low updatelatency with reduced hardware cost. Gate-based ternary

CAM (G-TCAM) [11] is a logical FPGA-based CAM implemented on FPGA with improved

hardware resources from previous TCAM architectures.

II.EXISTING SYSTEM AND PROPOSED SYSTEM

1.EXISTING SYSTEM: TCAM ARCHITECTURE

Fig.1. Simplified N×W G-AETCAM FOR N is depth of TCAM and W is width of TCAM).

TCAM architecture used to apply our proposed update mechanisms is a gate-based TCAM (G-

AETCAM) implemented on flip-flops (FFs) as memory and gates as logical blocks of FPGA. To

the best of our knowledge, G-AETCAM is the most efficient FPGA-based TCAM architecture

which uses less logical resources than the available TCAM architectures. It consists of G-

AETCAM cells that are capable of handling ‘masking bits’ and ‘storing bits’ to store TCAM

bits, as shown in Fig. 1. FFs are used as storage media, which are also referred to as register file

inside FPGAs. An N×W G-AETCAM architecture supports only static lookup tables and cannot

be updated at runtime. This makes it inefficient for practical applications where the TCAM

entries update dynamically. Our proposed designs enable G-AETCAM to dynamically update its

entries during runtime. Two update mechanisms based on the availability of hardware resources

are proposed in this work to achieve the comprehensive benefits of G-AETCAM in terms of

integrating it with practical applications.

Designing a Ternary Content-Addressable Memory (TCAM) based on FPGA (Field-

Programmable Gate Array) involves creating a hardware implementation that leverages the

reconfigurability and parallel processing capabilities of FPGAs. Below are the general steps

involved in implementing TCAM on an FPGA:

1. Define TCAM Requirements:

Clearly define the requirements of the TCAM, including the number of entries, bit width, and the

ability to store ternary values (0, 1, and "don't care").

2. FPGA Architecture Selection:

Choose an FPGA with sufficient resources (look-up tables, flip-flops, and memory blocks) to

accommodate the TCAM design. The FPGA should also support the required I/O standards and

clock frequencies.

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

53

3. Create TCAM Core:

Develop a custom TCAM core that consists of ternary memory cells and associated control logic.

Each memory cell should be capable of storing ternary values and support parallel search

operations.

4. Parallel Search Mechanism:

Implement a parallel search mechanism within the TCAM core. This involves designing the

logic to simultaneously compare input search keys with multiple entries in parallel.

5. Memory Storage Implementation:

Implement the storage of ternary values in memory cells. You may use dedicated memory blocks

on the FPGA or a combination of lookup tables and flip-flops to store the TCAM entries.

6. Write and Read Operations:

Develop the logic for write and read operations to allow the programming of TCAM entries and

the retrieval of matching entries based on input search keys.

7. Interface Integration:

Integrate the TCAM core with other components of the FPGA design. This includes interfaces

for external communication, such as input and output ports, and any necessary control and

configuration interfaces.

8. Clock Domain Considerations:

Manage clock domains appropriately to ensure synchronization and avoid potential issues related

to clock domain crossings.

9. Testing and Verification:

Implement comprehensive testbenches and verification procedures to ensure the correct

functionality of the TCAM design under various conditions. FPGA simulation tools and

hardware testing can be used for verification.

10. Synthesis and Implementation:

Use FPGA synthesis tools provided by the FPGA vendor to convert the hardware description

(e.g., written in Verilog or VHDL) into a bitstream that can be programmed onto the FPGA.

11. Optimization:

Optimize the TCAM design for area, speed, and power consumption. FPGA tools often provide

optimization options to achieve better performance.

12. Integration into Larger Systems:

Integrate the TCAM design into the larger FPGA-based system. This may involve additional

interfaces, interconnects, and coordination with other FPGA components.

13. Deployment and Iteration:

Program the synthesized bitstream onto the FPGA and deploy the system. Iterate through the

design process as needed to address any issues or make improvements.

2.PROPOSED SYSTEM

A. Proposed MUX-Update Mechanism

Fig. 2 shows the proposed architecture for MUX-Update mechanism to update the TCAM.

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

54

 It enables the TCAM to update an entry in fixed two clock cycles. The first clock cycle is to

store the “storing bits” of G-AETCAM at even bit positions of each word location while the

second clock cycle is to save the “masking bits” of G-AETCAM at odd bit positions of each

word location. The even/odd positions are used to reduce the I/O pins to half because of the

limited resources on FPGA.

The select line of 1-to-2 DMUX for storing bits is ‘0’, which for masking bits is ‘1’ as shown in

Fig 2. MUX Update mechanism updates the TCAM word in two clock cycles represented by line

4 and 8 in Algorithm 1.

B. Proposed LUT-Update Mechanism

Fig. 3 shows the proposed architecture for LUT-Update mechanism which updates the TCAM in W+1 clock cycles,

where W is the width of TCAM. Bit-Select-Memory (BSM) consists of two 3-input LUTs which outputs the

appropriate value to the input of MUX for 0, 1 and X bits of TCAM, using I0, I1 and Ix input pins, respectively. For

instance, an entry “10X1” needs to update in TCAM as highlighted in Fig. 3. The BSM stores “01”, “00”, “10”, and

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

55

“01” in 8-bit BR (buffer register) which is transferred to the corresponding location of TCAM in next clock cycle.

The update-latency, in this case, is five clock cycles, where W is 4. For a 36-bit word, this process is repeated 36

times to fill the BR with storing & masking bit. In the next clock cycle, the content of BR transfers to the TCAM

location, which is represented by line # 7 in Algo. 2.

The Switch statement in Algo. 2 handles different input values of BSM. One of the three cases is selected to provide

input values to two demultiplexers (DMUXes) for the corresponding location of BR. The number of iterations in the

for loop is dependent on the width of TCAM memory.

III. RESULTS AND ANALYSIS DISCUSSION

FIG1.TACM SIMULATION OUTPUT

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

56

FIG2.OUTPUT OF TCAM

FIG3.RTL SCHEMATIC OF TCAM.

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

57

FIG.4.SYNTHESIS DESIGN OF TCAM

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

58

FIG.5.UTILIZATION OF LUTS REPORT

FIG.6.POWER REPORT OF TCAM.

FIG.7.TIMING REPORT OF TCAM

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

59

CONCLUSION

Longer update-latency of TCAM affects the efficiency of searching-based systems, e.g.,

software-defined networks (SDN) on FPGAs. Our proposed techniques enable FPGAbased

TCAM architecture to update the TCAM entries at lower update-latency and in a cost-effective

way in terms of I/O pins usage.

In conclusion, Ternary Content Addressable Memory (TCAM) stands as a pivotal technology in

the realm of computing and networking, offering unparalleled capabilities in fast and efficient

data searching. Its unique ability to perform content-based searches in a single clock cycle has

made it indispensable in a variety of applications, ranging from network routing and security to

telecommunications and storage systems.

REFERENCES

[1] I. Ullah, Z. Ullah, and J.-A. Lee, “Efficient TCAM design based on multipumping-enabled

multiported SRAM on FPGA,” IEEE Access, vol. 6, pp. 19 940–19 947, 2018.

 [2] R. Karam, R. Puri, S. Ghosh, and S. Bhunia, “Emerging trends in design and applications of

memory-based computing and content-addressable memories,” Proceedings of the IEEE, vol.

103, no. 8, pp. 1311–1330, 2015.

[3] P. Reviriego, A. Ullah, and S. Pontarelli, “PR-TCAM: Efficient TCAM emulation on xilinx

FPGAs using partial reconfiguration,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, pp. 1–5, 2019.

 [4] M. Somasundaram, “Circuits to generate a sequential index for an input number in a pre-

defined list of numbers,” Dec. 26 2006, US Patent 7,155,563.

[5] F. Syed, Z. Ullah, and M. K. Jaiswal, “Fast Content Updating Algorithm for an SRAM based

TCAM on FPGA,” IEEE Embedded Systems Letters, 2017.

[6] X.-T. Nguyen, T.-T. Hoang, H.-T. Nguyen, K. Inoue, and C.-K. Pham, “An efficient I/O

architecture for RAM-based content-addressable memory on FPGA,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 66, no. 3, pp. 472–476, 2018.

 [7] A. Ahmed, K. Park, and S. Baeg, “Resource-Efficient SRAM-Based Ternary Content

Addressable Memory,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.

25, no. 4, pp. 1583–1587, 2017.

[8] C. A. Zerbini and J. M. Finochietto, “Performance evaluation of packet classification on

FPGA-based TCAM emulation architectures,” in Global Communications Conference

(GLOBECOM), 2012 IEEE. IEEE, 2012, pp. 2766–2771.

 [9] T. Nguyen-Viet and D.-H. Le, “TCAM-based flow lookup design on FPGA and its

applications,” in 2015 International Conference on Advanced Technologies for Communications

(ATC). IEEE, 2015, pp. 378– 382.

 Juni Khyat (UGC Care Group I Listed Journal)

ISSN: 2278- 4632 Vol-14 Issue-02 Dec 2024

60

[10] Z. Wang, H. Che, M. Kumar, and S. K. Das, “CoPTUA: Consistent policy table update

algorithm for TCAM without locking,” IEEE Transactions on Computers, vol. 53, no. 12, pp.

1602–1614, 2004.

 [11] M. Irfan and Z. Ullah, “G-AETCAM: Gate-Based Area-Efficient Ternary Content-

Addressable Memory on FPGA,” IEEE Access, vol. 5, pp. 20 785–20 790, 2017.

[12] Z. Ullah, M. K. Jaiswal, R. C. Cheung, and H. K. So, “UE-TCAM: An ultra efficient

SRAM-based TCAM,” in TENCON 2015-2015 IEEE Region 10 Conference. IEEE, 2015, pp.

1–6.

[13] W. Jiang, “Scalable ternary content addressable memory implementation using FPGAs,” in

Proceedings of the ninth ACM/IEEE symposium on Architectures for networking and

communications systems. IEEE Press, 2013, pp. 71–82.

 [14] T. Mishra, S. Sahni, and G. Seetharaman, “PC-DUOS: Fast TCAM lookup and update for

packet classifiers,” in 2011 IEEE Symposium on Computers and Communications (ISCC). IEEE,

2011, pp. 265–270.

[15] Z. Ullah, K. Ilgon, and S. Baeg, “Hybrid partitioned SRAM-based ternary content

addressable memory,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no.

12, pp. 2969–2979, 2012.

[16] H. Mahmood, Z. Ullah, O. Mujahid, I. Ullah, and A. Hafeez, “Beyond the limits of typical

strategies: Resources efficient FPGA-based TCAM,” IEEE Embedded Systems Letters, 2018.

