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Abstract- The ever-increasing demand for mobile bandwidth in wireless social networks has 

made the need for a fair pricing mechanism for socially enabled services paramount. It seems to 

reason that, notwithstanding the prevalence of static pricing in the real data market, more 

revenue would be generated by dynamically changing prices. Maximising the expected long-

term revenue via the development of the optimal dynamic pricing strategy should be your top 

priority. This study takes a look at the social data industry by analysing it via the sequential 

dynamic pricing structure of a monopoly mobile network operator. Over the course of many time 

periods, the operator (the seller) offers each mobile user (the buyer) a fixed price in the market. 

This process repeats itself. The proposed strategy boosts the need for social data by capitalising 

on the network effects generated by mobile users' activities. Wireless network congestion, 

caused by limited radio resources, is also included into the pricing process. Then, to guarantee 

that mobile clients are treated equitably according to their unique utilities, we propose an 

amended sequential pricing structure. To have a better understanding, we go further into a 

concurrent dynamic pricing system in which the operator pays for the data all at once. We show 

that the proposed dynamic pricing system outperforms the baseline static pricing scheme in 

terms of operator revenue and consumer total utilities. Our social network is constructed using 

real datasets and the Erd˘os-R'enyi (ER) model in order to evaluate performance. According to 

the numbers, operators may potentially make a lot more money by switching to dynamic pricing 

systems from static ones. 

Keywords-- Network economics, mobile social data market, network effects, congestion effects, 

dynamic pricing, revenue maximization. 

 

I. INTRODUCTION  

 The explosion of social app services on mobile platforms has led to a surge in the demand 

for social media data collected from mobile devices. The ability to interact with others online via 

mobile social services is a major draw for consumers, who are increasingly spending time on 

these sites [1]. Nearly three billion individuals, or 57% of the total mobile internet users, used 

their mobile devices to visit social media sites in 2018 [2]. Users' increased usage of social 

services leads to stronger social relationships, which boosts their consumption of social data and 

interactions with others, creating a positive feedback loop [3]. According to [2], the proportion of 

cellular data use attributable to social media activity on mobile platforms has been rising over the 
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last several years and now exceeds 50%. It stands to reason that friends of an active user would 

likely increase their own involvement levels in a social service. "Network effect" is the economic 

term for this occurrence [4]. It happens when other users' demands have a positive effect on one 

user's need for social data. For obvious financial reasons, mobile network providers would love 

to have their users—and, by implication, their potential customers—use more social data. After 

all, it is the users who pay for the data consumed by social services. When there are strong 

network effects, the mobile network operator usually ends up with more money [5, 6]."Network 

effect" has been the subject of several articles in economics and sociology [7]. Several studies 

have proposed pricing under equilibrium conditions as a means of controlling the operation of 

social networks with respect to network effects [8, 9]. Research on network effects has also 

broadened to include communication networks such as the Internet, mobile ad hoc networks, and 

peer-to-peer networks, in addition to more classic areas of network economics [3, 11, 12]. This 

potential benefit, however, remains a pipe dream due to the limitations of physical 

communication networks, such as bandwidth. This is because customers are less likely to access 

and use more data if doing so causes congestion, such service delay, which discourages them 

from expanding their data demand. Increased congestion is a major problem for the network 

operator since it reduces their revenue [5, 13]. Therefore, the network effects in the social 

domain and the congestion effects in the network domain both influence mobile users' data 

consumption. On the other hand, this issue has received little attention from network operators in 

the literature. Network operators have the opportunity to boost their revenue by strategically 

pricing services to influence client demand [14]. At first, the operator's only strategy for 

attracting users was static pricing, which took the shape of simple flat-rate data contracts. As 

more and more people watch films and use apps online, dynamic pricing has emerged as a 

practical way to handle customers' erratic data needs. The basic premise is that smart use of 

pricing to affect demand may assist solve underutilised capacity and increase revenue [15]. To 

maintain a steady supply and demand, mobile message pricing are dynamically changed on a 

daily or even hourly basis by businesses such as MTN in Uganda and Uninor in India [14], [16]. 

In addition, China Telecom provides its clients with cheaper data at less busy times, such as the 

night; otherwise, the charge does not change.Dynamic pricing has lately been a hot subject in the 

revenue management literature, and it has numerous practical applications in areas such as cloud 

computing[15], smart data[16], smart grid[17], and power control [18]. The capacity to change 

rates gives mobile network operators the chance to optimise their profits in the long run by 

pursuing the optimal dynamic pricing strategy. Having established the stochastic buyer (user) 

demand model, most dynamic pricing publications (e.g., [15]-[18]) mainly target the seller's 

point of view. In other words, they prioritise the seller's profit maximisation above client 

connections. Congestion effects and network effects are interdependent, which complicates 

interactions and has an even greater influence on customers' demand patterns. Academics have 

paid little attention to a major issue with dynamic pricing operations: the mobile data market's 

heavy reliance on network and congestion impacts. For the first time, this study looks at how 

mobile network operators, or vendors in the social data market, could optimally implement 
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dynamic pricing schemes when selling social data to a group of mobile users in a setting where 

congestion and network effects affect the users' behaviour. The operator consistently and 

sequentially offers a set price to each customer over several time periods in our proposed 

sequential dynamic pricing mechanism. Given the frequency of data plan updates (e.g., once a 

month), it's crucial to consider the evolution of the operator-consumer dynamic. A brief synopsis 

of the main arguments presented in this paper follows:  

 

The need for social data from mobile users is further augmented by our modelling of network 

effects in the social domain, which makes use of the structural aspects of social networks. In 

order to accurately reflect the limited availability of radio resources in a wireless network setting, 

the model also accounts for congestion effects in the domain of networks. In addition, we 

provide analytical proof that sequential dynamic pricing, as we have suggested, may lead to 

higher total utilities for mobile users and more income for mobile network operators compared to 

the current best static pricing scheme.  

To gain more insights, the simultaneous dynamic pricing is developed in which the operator 

determines the pricing strategy at the beginning of each time period and users decide on their 

individual data demand in each time period simultaneously. We find the insights that the 

operator tends to offer the discount price to the users with more social influence which may bring 

more potential users subsequently, and the discount price is still slightly higher for the users with 

more influence since the new coming users may lead to the decrease of user utility because of 

congestion effects. 

 We examine two social graphs in order to define the nature of the network effects resulting from 

social networks. The Erd˘os-R'enyi (ER) model is used to generate the first graph [19], while the 

Brightkite dataset is used to build the second graph [20]. The results of the performance review 

back up the claim that operators may significantly increase their income by using dynamic 

pricing systems instead of static ones. 

 

II. RELATED WORKS 

 The data pricing plan for the network operators is a body of literature that is relevant to 

our work. Its purpose is to provide lucrative business opportunities while also facilitating the 

creation of user-friendly services [14], [21]. There are a number of new and interesting data 

pricing schemes that network operators have been dealing with recently, such as sponsored data 

plans[23], [24], and secondary data market schemes [22]. Nevertheless, when it comes to 

structuring data pricing, the majority of previous efforts fail to include the homophily 

phenomena, often known as network effects. A new paradigm for optimising and designing 

networks is the social component of mobile networking [5]. The data gained via social tie 

relationships will impact decision making, according to the authors of [25]. Using actual data 

analytics, the authors of [26] demonstrated the existence of network effects in communication 

services and used a straightforward measure to quantify these impacts. Network effects and 
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service pricing have been studied together from an economic standpoint, drawing on [26] as an 

inspiration [9]. In the seminal paper [8], for instance, the authors looked at the service provider's 

pricing strategies with network effects taken into account. The authors addressed the topic of 

dynamic pricing strategies for divisible social products with network effects in references [27], 

[28]. Having said that, the user behaviours in the social domain were the only ones examined in 

the aforementioned research. Wireless networks and other physical networks often force users to 

share scarce communication resources like bandwidth. Hence, the physical domain congestion 

impact on user behaviours is also widespread [29]-[32]. For instance, when an Internet service 

provider has high subscriber demand, it might lead to congestion as a result of insufficient 

bandwidth and radio resources [33]. As a result, the model presented in references [8, 9, 27, 28] 

has a significant flaw: it isn't suitable for use in wireless network settings, where radio resources 

are limited and congestion is common. Therefore, it is unclear whether network operators 

continue to reap the benefits of network effects in the face of congestion.To make the most of 

social data services, it's better to create prices that take congestion and network impacts into 

account holistically. This way, network operators can maximise their income. As far as we are 

aware, no other study has suggested data pricing systems that take both congestion and network 

impacts into account simultaneously. The only one that comes close is [5]. Expanding on the 

model given in [8], the authors in [5] modelled the interaction between a network operator and 

mobile users as a two-stage Stackelberg game. The leading service provider sets the fee for users 

in Stage I, the highest level of the game. Next, at Stage II's lower pricing point, users who are 

following each other make a simultaneous decision on the data demand that maximises their 

individual utilities. However, the authors of [5] only used a one-shot game to simulate the 

relationship between mobile consumers and the network provider using static pricing. This 

means the operator is unable to make use of its strategy-modification capabilities in light of past 

data. We investigate the sequential dynamic pricing method in [35], which accounts for this void 

by considering user behaviour in the context of network and congestion impacts. Additional 

findings from analyses are also included in this publication. In particular, the social justice 

problem is addressed by using the sequential dynamic pricing method. In addition, we look at the 

concurrent dynamic pricing to learn more. The table below summarises the main points that set 

this study apart from most similar ones. I.  

Table I Comparison Of Our Work With Most Related Works On Pricing 
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III. PROPOSED METHOD 

A. Basic static model 

 Here, Ƙ ={1,2,3………N} denotes a set of mobile users in a social data market. Every 

customer, denoted as i in the set Ƙ, chooses a non-negative data demand from a Mobile Network 

Operator (MNO), where xi is a number between zero and infinity, in order to access social 

services. Let x = (x1,..., xN) denote the demand profile for all users, and let x-i denote the 

demand profile for user i minus that profile. In a nutshell, the user with a lack of long-term vision 

will choose the option that maximises the price per data unit pi. Here is how the user's utility is 

defined in a more formal sense:Improving one's social network standing may be as simple as 

joining in on the activities of other members [3]. In particular, gij stands for the presumed one-

way effect of user j on user i. When we say that users i and j have a reciprocal social tie, we say 

that gij = gji. For social connections that go both ways, however, the idea remains the same. 

With gii= 0, it is impossible for an individual user to influence oneself in any manner. The 

amount that the MNO deducts from user i under usage-based pricing is pixi. Here we have a look 

at the discriminatory pricing scheme, where the MNO charges different consumers different 

amounts [36], [37]. More importantly, consumers may experience congestion, such as service 

delays, due to mobile networks' limited radio resources, when the demand for social data grows 

all at once. Therefore, we investigate user behaviour by integrating the effects of network size 

and congestion. The demand of all users influences each user's congestion experience, as 

indicated by the quadratic sum form. The marginal cost of congestion also increases as total 

demand climbs. Theoretically, the vendor (MNO) may charge different customers different 

amounts (discriminatory pricing) if they knew everything about the social network [38]. Here is 

the declared purpose of the MNO: maximisation of revenue:  

 

The two-stage Stackelberg game is a suitable tool for simulating the MNO-user dialogue [5, 13, 

39]. The leader (MNO) chooses price pi at the beginning of Stage I to maximise its profits. Users 

(i.e., followers) in Stage II's bottom half maximise utility by determining their own data demand 

xi, taking into consideration the price pi set by the MNO. At first, we utilise backward induction 

methods to study a set of strategies where the Nash equilibrium (i.e., no user deviates based on 

the offered price) is reached. This Nash equilibrium could lead us to delve more into the optimal 

MNO pricing.  

B. Dynamic model extension 

 Here, Ƙ ={1,2,3………N} denotes a set of mobile users in a social data market. Every 

customer, denoted as i in the set Ƙ, chooses a non-negative data demand from a Mobile Network 

Operator (MNO), where xi is a number between zero and infinity, in order to access social 

services. Let x = (x1,..., xN) denote the demand profile for all users, and let x-i denote the 

demand profile for user i minus that profile. In a nutshell, the user with a lack of long-term vision 

will choose the option that maximises the price per data unit pi. Here is how the user's utility is 

defined in a more formal sense:Improving one's social network standing may be as simple as 

joining in on the activities of other members [3]. In particular, gij stands for the presumed one-
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way effect of user j on user i. When we say that users i and j have a reciprocal social tie, we say 

that gij = gji. For social connections that go both ways, however, the idea remains the same. 

With gii= 0, it is impossible for an individual user to influence oneself in any manner. The 

amount that the MNO deducts from user i under usage-based pricing is pixi. Here we have a look 

at the discriminatory pricing scheme, where the MNO charges different consumers different 

amounts [36], [37]. More importantly, consumers may experience congestion, such as service 

delays, due to mobile networks' limited radio resources, when the demand for social data grows 

all at once. Therefore, we investigate user behaviour by integrating the effects of network size 

and congestion. The demand of all users influences each user's congestion experience, as 

indicated by the quadratic sum form. The marginal cost of congestion also increases as total 

demand climbs. Theoretically, the vendor (MNO) may charge different customers different 

amounts (discriminatory pricing) if they knew everything about the social network [38]. Here is 

the declared purpose of the MNO: maximisation of revenue:  

 

The two-stage Stackelberg game is a suitable tool for simulating the MNO-user dialogue [5, 13, 

39]. The leader (MNO) chooses price pi at the beginning of Stage I to maximise its profits. Users 

(i.e., followers) in Stage II's bottom half maximise utility by determining their own data demand 

xi, taking into consideration the price pi set by the MNO. At first, we utilise backward induction 

methods to study a set of strategies where the Nash equilibrium (i.e., no user deviates based on 

the offered price) is reached. This Nash equilibrium could lead us to delve more into the optimal 

MNO pricing.  
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IV. RESULTS AND DISCUSSION 

 We conduct the simulations in this part to demonstrate the impact of different variables 

on the proposed dynamic pricing systems. By modelling the social network G using the Erd˘os-

R'enyi (ER) graph, the social characteristics may be represented. Any two nodes in the ER 

network might be friends with each other with the same probability, Pe. We also simulate the 

real social network using the actual data trail from Brightkite [20]. Brightkite is a social 

networking program for mobile phones that allows users to have direct, unfiltered conversations 

with one another. We create the social network by picking N users at random from the real 

dataset, where N = 10, 15,..., 50. For each set of N users, we calculate the mean results after 500 

repetitions. Figure 1 shows the correlation between the volume of social connections, the 

probability of social ties, and the number of users in the real dataset. Sequential Dynamic Pricing 

(SeqDP) may guarantee convergence of MNO revenue and user total utilities throughout the first 

40 time periods, as shown in Figures 2 and 3. Next, we compare the two users' individual utility 

under SeqDP with and without social fairness consideration; Figure 4 shows the results. This 

demonstrates that the updated SeqDP has a chance of achieving social fairness with respect to 

the network utility of the person. We may evaluate the total utility of mobile users in relation to 

social data demand and the MNO's revenue by comparing the proposed SeqDP's income and 

total utilities with those of OSP (Figures 5 and 6). As a control situation, our performance 

assessments also include the scenario when user needs for social data are unrelated. Our 

proposed socially aware user benefit is meaningless if a user has no social connections at all. 

Additionally, we compare the ER-based social graph model's (social graph-ER) performance on 

the real dataset to that of the Brightkite-based social graph model (social graph-Brightkite).Total 

utilities increase when the chance of social edge increases, as seen in Figure 5. The proposed 

SeqDP outperforms OSP in terms of total utility as the probability of social edge increases. A 

person's total utility rises when the probability of social edge rises because they have more social 

neighbours and more additional benefits from their neighbours' social data need. Therefore, the 

SeqDP's MNO revenue rises as the risk of social edge does. As the probability of social edge 

increases, the fundamental concept is that the MNO's bottom line will profit from the increasing 

demand for social data caused by greater underlying network effects. The findings of the ER-

based social graph model, which disregards social relationships entirely, corroborate this.  

  

 
Figure 1. Real social data trace from Brightkite [20]: total number of social ties versus the 

number of users (left), and probability of social tie versus the number of users (right). 
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Figure 2. Normalized total revenue of the MNO versus time periods. 

 
 

Figure 3. Normalized total utilities of mobile users versus time periods. 

 
Figure 4. The illustration of individual utility of users with and without social fairness 

consideration. 

 
Figure 5. Normalized total utilities of users and normalized revenue of the MNO versus the 

probability of social edge. 
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Figure 6. Normalized total utilities of users and normalized revenue of the MNO versus the 

congestion coefficient. 

 

V. FUTURE SCOPE AND CONCLUSION 

 In this post, we have presented a method for optimising income in the mobile social data 

market via the use of dynamic pricing techniques. The network operator would systematically 

charge each user a set fee for accessing their social data across different time periods under our 

proposed sequential dynamic pricing scheme. Using the proposed pricing system, researchers 

have examined the implications of network effects in the social domain as well as the affects of 

congestion in the network domain. To confirm that the pricing schemes' dynamics are superior, 

we have conducted comprehensive performance evaluations utilising the Erd˘os-R’enyi graph 

and the social graph, both of which are based on real datasets. Using machine learning to 

determine the optimal parameter values in the real data market will allow us to make more 

informed and precise forecasts on user demand in our future studies. Congestion coefficients and 

network effects, for example, may have a temporal profile at different time points. Consequently, 

we will look at techniques to forecast the values of such parameters in a dynamic mobile social 

data market. Another interesting direction to go is to find out how sensitive theoretical results are. 

To be more precise, we'll include factors like congestion and network affects into the user utility 

calculation.  
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