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           Abstract 

This paper introduces a novel framework for learning data science models by using the scientific knowledge encoded in physics-

based models. This framework, termed as physics- guided neural network (PGNN), leverages the output of physics-based model 

simulations along with observational features to generate predictions using a neural network architecture. Further, we present a 

novel class of learning objective for training neural networks, which ensures that the model predictions not only show lower 

errors on the training data but are also consistent with the known physics. We illustrate the effectiveness of PGNN for the 

problem of lake temperature modeling, where physical relationships between the temperature, density, and depth of water are 

used in the learning of neural network model parameters. By using scientific knowledge to guide the construction and learning of 

neural networks, we are able to show that the proposed framework ensures better generalizability as well as physical consistency 

of results. 

 

1    Introduction 
Physics-based models, which are founded on core sci- entific principles,  strive to advance our understanding of the physical 
world by learning explainable relation- ships between input and output variables. These models can range from solving closed-
form equations (e.g. us- ing Navier–Stokes equation for studying laminar flow) to running computational simulations of 
dynamical sys- tems (e.g. the use of numerical models in climate sci- ence, hydrology, and turbulence modeling). For exam- ple, a 
number of physics-based models use parameter- ized forms of approximations for representing complex physical processes that 
are either not fully understood or cannot be solved using computationally tractable methods. Calibrating the parameters in 
physics-based models is a challenging task because of the combinato- rial nature of the search space. In particular, this can result 
in the learning of over-complex models that lead to incorrect insights even if they appear interpretable at 
 

a first glance.  For example, these and other challenges in modeling hydrological processes using state-of-the- art physics-based 
models were the subject of a series of debate papers in Water Resources Research (WRR) [5, 10, 14]. 
In contrast, data science methods, that have found tremendous success in several commercial applications where Internet-scale 
data is available (e.g., natural lan- guage processing, object tracking, and most recently, autonomous driving), are being 
increasingly anticipated to produce similar accomplishments in scientific do- mains [4, 8, 22]. To capture this excitement, some 
have even referred to the rise of data science in scientific do- mains as “the end of theory” [1],  the idea being that, the 
increasingly large amounts of data makes it possi- ble to build actionable models without using scientific theories. However, in 
the absence of adequate informa- tion about the physical mechanisms of real-world pro- cesses, data science approaches are 
prone to false dis- coveries and could even exhibit serious inconsistencies with known physics. This is because scientific problems 
often involve complex spaces of hypotheses with non- stationary relationships among the variables that are difficult to capture 
solely from the data. 
Physics-guided data science (PGDS) is an emerging paradigm that aims to leverage the wealth of physical knowledge for 
improving the effectiveness of data sci- ence models in enabling scientific discovery [9]. One of the central goals of  PGDS  is  to  
ensure  the  learn- ing of physically consistent models, by seamlessly blend- ing physical knowledge in data science methods. Tradi- 
tional learning frameworks in data science are founded on statistical principles for favoring  simpler  models, e.g., the principle of 
bias-variance trade-off [3]. While the trade-off between reducing bias and variance is at the heart of a number of machine 
learning algorithms [23, 3, 24], in scientific applications, another source of in- formation becomes available for ensuring 
generalizabil- ity, which is the available scientific knowledge. By prun- ing candidate models that are inconsistent with known 
physics, we can significantly reduce the search space and variance of models possibly without adversely affecting 
their bias. A learning algorithm can then be focused on the space of physically consistent models, leading to generalizable 
and scientifically interpretable models. This is a fundamental objective of PGDS—to include physical consistency as a critical 
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component of model performance along with training accuracy and model complexity. In particular, ensuring physical consistency 
of a model can be at least as important as improving predictive performance, to safeguard against the possi- bility of learning 
spurious patterns purely from the data, especially in problems that are of a critical nature and are associated with high risks. 
In  this  paper,  we  introduce  a  novel  framework of knowledge discovery in scientific problems that combines the power of 
deep learning with physics- based models, termed as physics-guided neural networks (PGNN). In particular, we present an approach 
to lever- age the output of physics-based model simulations along with the observational features for making predictions using a 
neural network architecture. Further, we intro- duce a novel class of physics-based learning objective for training neural networks, 
which ensures that the learned networks not only admit to lower errors on the training data set but also produce outputs that are 
consistent with our scientific understanding of the physical world. The use of physical consistency as a learning objective is aimed 
at ensuring better generalizability of the learned network, thus serving as the third pillar of generaliza- tion performance 
estimate alongside training accuracy and model complexity as follows: 
 

Performance ∝ Accuracy + Simplicity + Consistency. 

 
To demonstrate the framework of PGNN, we consider the illustrative problem of modeling the temperature of water in a lake at 
varying depths and times, using me- teorological observations as well as physics-based model simulations.  For this problem, we 
exploit an interest- ing relationship between the temperature, density, and depth of water at any given time in a lake to 
construct a physics-based learning objective for training neural net- works. While the methodological descriptions of PGNN in this 
paper are centered around the problem of lake temperature modeling, similar formulations of PGNN can be explored in a wide 
range of scientific disciplines involving physics-based models. 
The remainder of this paper is organized as follows. Section 2 briefly describes the illustrative problem of lake temperature 
modeling that is the focus of this paper. Section 3 presents the proposed framework of PGNN. Section 4 discusses experimental 
results while Section 5 provides concluding remarks  Lake Temperature Modeling 
We demonstrate the framework of PGNN for the illus- trative problem of lake temperature modeling. The tem- perature of water 
in a lake is governed by a variety of physical processes pictorially shown in Figure 1, e.g., the heating of the water surface due to 
incoming shortwave radiation from the sun, the attenuation of radiation be- neath the surface and the mixing of layers with 
varying energies at different depths, and the dissipation of heat from the surface of the lake via evaporation or longwave 
radiation. 
Knowledge of these physical processes can help us model the dynamics of water temperature in a lake, which is known to be 
an ecological “master factor” [12] that controls the growth, survival, and reproduction of fish (e.g., [20]). Warming water 
temperatures can in- crease the occurrence of aquatic invasive species [17, 21], which may displace fish and native aquatic 
organisms, and result in more harmful algal blooms (HABs) [6, 15]. Understanding temperature change and the resulting bi- otic 
winners and losers is timely science that can also be directly applied to inform priority action for natu- ral resources. 
Accurate water temperatures (observed or modeled) are critical to understanding contemporary change, and for predicting 
future thermal for economi- cally valuable fish. 
Since observational data of water temperature at broad spatial scales is incomplete (or non-existent in some regions) high-
quality temperature modeling is nec- essary. Of particular interest is the problem of model- ing the temperature of water, Yd,t, 

at a given depth1, d, and on a certain time, t. This problem is referred to as 1D-modeling of temperature (depth being the sin- 
gle dimension). A number of physics-based models have 

 
. 

been developed that make use of input drivers available at every depth and time-step, X̃d,t, to produce model es- 

timates of temperature at every depth and time, Y P hy. These models have a number of parameters (e.g., pa- rameters related to 
vertical mixing, wind energy inputs, and water clarity) whose values can be set to default val- ues or custom-calibrated for each 
lake if some training data is available. The basic idea behind these calibra- tion steps is to run the model for each possible com- 
bination of parameter values and select the one that has maximum agreement with the observations (lowest RMSE). Because 
this step of custom-calibrating is both 
based model. In particular, we can complement the deficiencies of a physics-based model in the PGNN framework, by 
learning features extracted as complex combinations of input drivers and physics-based model outputs. We adopt a basic multi-
layer perceptron architecture to regress the temperature, Yd,t, on any given depth and time, using the input attributes, Xd,t. 
For a fully-connected network with L hidden layers, this amounts to the following modeling equations relating the input 



JuniKhyat                                                                                            ( UGC Care Group I Listed Journal)  
ISSN: 2278-463                                                                                               Vol-12 Issue-02 2022 
 

Page | 3                                                                                                                                                              Copyright @ 2022 Authors 
 

d,t 

attributes on a data instance, x, to its target prediction, ŷ: 
labor- and computation-intensive, there is a trade-off between increasing the accuracy of the model and ex- panding the 
feasability of study to a large number of 
Physics-guided Neural Network 
Our proposed framework of PGNN uses the scientific knowledge contained in physics-based models in two different ways: (a) by 
ingesting the output of physics- based models in the neural network framework, and 
(b) by using a novel physics-based learning objective to ensure the learning of physically consistent predictions, as described in 
the following. 
 

Ingesting Physics-based  Model  Simulations Since the meteorological observations of input drivers are only available at the 
surface of the lake  but  we need to estimate lake temperature at varying values of depth, we consider depth as another 
attribute in the 

list  of  input  variables,  X̃d,t.   We  further  augment  this 
set of attributes using the simulated model outputs of a generic physics-based model,  Y P hy,  resulting in the 
where n is the number of training instances. 
 

Physics-based    Learning    Objective:    Apart from minimizing training errors, we exploit an inter- esting physical relationship 
between the temperature, density, and depth of water in a lake, that serves as the basis of our physics-based learning 
objective used for training PGNN. In the following, we introduce the two key components of this physical relationship and de- 
scribe our approach for using it to ensure the learning of physically consistent predictions. 
 

Temperature–Density Relationship: The temperature, Y , and density, ρ, of water are non-linearly related to each other according 
to the following known physical equation [13]: 
 

(3.7) 
 

predictions of a PGNN model, can be used as a mea- sure of physical consistency of the PGNN model. Note that a data science 
model that is inconsistent with the known physical laws is likely to be learning specific and non-generalizable patterns from the 
training data (e.g., arising from noise in the training attributes as well as labels), in the pursuit of minimizing its training loss. 
When the sizes of both the training and test sets are small (as is common in many scientific problems), such subtle forms of 
overfitting may go unnoticed even af- ter using standard evaluation frameworks (e.g., cross- validation) and conventional 
regularizers based on sta- tistical notions of model complexity. The learned mod- els, when applied on novel unseen instances 
that were not adequately represented in the training and test sets, can then result in poor generalization performance, of- ten 
coming off a surprise [11]. 
In contrast to conventional learning  objectives, since the known laws of physics are assumed to hold equally well for any unseen 
data instance, ensuring the physical consistency of model outputs as a learning ob- jective in PGNN can help in achieving better 
generaliza- tion performance even when the training data is small and not fully representative.   Additionally,  the output of a 
PGNN model can also be interpreted by a domain expert and ingested in scientific workflows, thus leading to scientific 
advancements. Note that in our particular problem of lake temperature modeling, even though the neural network is being 
trained to improve its accuracy on the task of predicting water temperatures, PGNN ensures that the temperature predictions 
also translate 

bonding between water molecules)2. This function is convex in  the  range  of  temperature  values  that  this is relationship holds,  
making  it  possible  to  compute its gradients and use then in the back-propagation algorithm.     Given  the  temperature  
predictions  of  a 

PGNN  model  at  a  given  depth  and  time,  Ŷd,t,  we  can 
use Equation 3.7 to compute the corresponding density prediction, ρ̂d,t. 
 

Density–Depth    Relationship:    The    density of water monotonically increases with depth as shown in the example plot of 

Figure 2(b). Formally, the density of water at two different depths, d1 and d2, on the same time-step, t, are related to each other in 
the following manner: 
to consistent relationships between other physical vari- ables, namely density and depth. Similar forms of rela- tionships can be 
leveraged in other scientific problems involving multiple physical variables that are related to each other, thus resulting in a 
wholesome solution to physical problems. 
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To compute a quantifiable measure of physical con- sistency using the density-depth relationship encoded in Equation 3.8, we 
consider the pair-wise differences be- tween density predictions at consecutive depths on the same time-step. In particular, we 
sort the depth values available for a certain time-step, t, in increasing order: d1 . . . dnt (where nt is the number of obervations on 

time-step t), and compute the consecutive differences as follows: pronged view of generalization performance (accuracy, 
simplicity, and physical consistency) introduced in Sec- tion 1. As the final loss function is differentiable almost everywhere, we 
use the backpropagation algorithm to compute and transmit gradients at the output and hid- den layers. 
 

3 Results 
Data We consider the example lake of Mille Lacs in Minnesota, USA, to evaluate and analyze the PGNN models presented in this 

paper. This is a reasonably large lake (536 km2) that shows sufficient dynamics in the temperature profiles across depth over time, 
mak- ing it an interesting test case for analysis. Water tem- perature observations for our study lake were collated from a variety of 
sources including Minnesota Depart- ment of Natural Resources, and from a web resource that collates federal and state agencies, 
academic moni- toring campaigns, and citizen data [18]. These temper- ature observations vary across depths and time, with some 
years and seasons being heavily sampled, while other time periods having little to no observations. The overall data comprised of 
10,954 temperature observa- tions from 29 June 1990 to 3 Jan 2016. For each ob- servation, we used a set of 11 meteorological 
drivers as input variables, listed in Table 1. While many of these drivers were directly measured, we also used some domain-
recommended ways of constructing derived fea- tures such as Growing Degree Days [16]. 
We used the General Lake Model (GLM) [7] as the 
physics-based approach for modeling lake temperature in our experimental studies. The GLM uses the drivers listed in Table 1 as 
input parameters and balances the energy and water budget of lakes or reservoirs on a daily or sub-daily timestep. It 
performs a 1D modeling (along depth) of a variety of lake variables (including water  temperature)  using  a  vertical  Lagrangian  
layer 
scheme. We used the uncalibrated GLM model outputs as additional input attributes in our PGNN framework, along with the 
measured drivers. 
 

Experimental Setup: We considered contigu- ous time windows for constructing training and test sets from the overall 
data, to ensure that the test set is indeed independent of the training set and the two data sets are not temporally auto-
correlated. Since dif- ferent years have different number of observations, we roughly chose 40% of the overall data for testing 
(29 Oct 2005 to 9 Dec 2012), and used the remainder time periods (corresponding to 60% of the data) for training (29 June 1990 
to 27 Oct 2005 and 11 Dec 2012 to 3 Jan 2016). A portion of the training set (corresponding to the year 2005) was held out as 

the validation set for find- ing the right choice of neural network hyper-parameters: λ1, λ2, λP hy   .    We  used  a  network  
architecture  with 2 hidden layers, with 50 and 30 hidden nodes in the first and second hidden layers, respectively. We used 
the stochastic gradient descent (SGD) algorithm with a batch size of 100 to run the backpropagation algorithm, and performed a 
time-varying decay of the learning rate using an initial value of 0.01 and a decay parameter of 

10−3. 

 Evaluation: We consider the following baseline methods to compare with our proposed framework: 
 

PHY: We compare our performance with the ini- tial physics-based model, termed as PHY, that was used as an input in the 
PGNN framework. Ex- ploring the differences in the model outputs of PGNN and PHY can shed  light  on  the  deficien- cies of the 
generic physics-based model, and high- light the promise in using deep learning in conjunc- tion with physics-based models to 
improve model- 
ing performance. 
pureDS: In order to understand the importance of combining physics with deep learning methods, we consider the baseline 
method of learning neu- ral network architectures in a purely data-driven fashion. This would correspond to only using the 

meteorological  observations  X̃  as  input  attributes in the network, and using a learning objective that only contains the training 

loss, LossT r and the L1 and L2 regularizers. This model is being termed as pureDS. 

PGNN0:  In  order  to  understand  the  contribu- tion of the physics-based learning objective used in PGNN, we consider an 

intermediate product of our framework, PGNN0, as another baseline, which makes use of the physics-based model simulations, Y 
P
 

hy
, as input attributes in the network architec- ture, but does not use the physics-based loss func- tion, LossP hy, in the learning 

objective. Hence, PGNN0 differs from pureDS in its use of physics- based model simulations as input attributes, and differs from 
PGNN in its use of a purely data-driven learning objective. 
To compare the performance of PGNN with differ- ent baseline schemes, we considered the following two evaluation measures: 

• 

• 

• 
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RMSE: We use the root mean squared error (RMSE) of a model on the test set as an estimate of its generalization 

performance. The units of this metric is in ◦C. 
Inconsistency: Apart from ensuring generaliz- ability, a key contribution of PGNN  is  to  ensure the learning of physically 
consistent model predic- tions. Hence, apart from the RMSE, we use another critical evaluation measure to check the physical 
consistency of the results. In particular, we count the number of time-steps that have a positive pair- wise difference among 
consecutive depths, ∆i,t, and report the percentage of such time-steps as the In- consistency measure. 

 
 
the smallest RMSE than all other baseline methods. Compared with the physics-based model, PHY, that was used as a 

starting point for building PGNN, we are able to reduce the RMSE from 2.57◦C to 1.16◦C, which is a substantial improvement 

in the field of limnology. To appreciate the significance of a drop in RMSE of 1.41◦C, note that a lake-specific calibration 
approach 

that produced a median RMSE of 1.47◦C over 28 lakes is 
considered to be the state-of-the-art in the field [2]. For 

this specific lake, we also used a lake-specific calibration of the physics-based model, termed as PHY∗, which was prepared by 
running the GLM model using different combinations of model parameters and choosing the model parameter that showed the 

lowest RMSE on the overall data. This fine tuned model showed an RMSE of 1.26◦C on the overall data. Note that while this RMSE 

cannot be considered as an unbiased estimate of the performance of PHY◦ (since the same data was used for calibrating the 

model as well as for computing RMSE), note that the test RMSE of PGNN is  still  lower  than that of PHY∗. This shows the promise 
in augmenting simple physics-based models using data science methods for improved modeling performance, reducing the need for 
performing expensive model calibrations. 
Another highlight of the results in Table 2 is that PGNN not only achieves the lowest test RMSE, it is able to do so while incurring 
the lowest Inconsistency among all data science methods, thus representing a generaliz- able as well as physically consistent 
solution.  Note that if we apply the black-box data science model, pureDS, we indeed are able to achieve a lower RMSE than the 
physics-based model, PHY. However, this improvement in RMSE is achieved at the cost of a large value of Incon- sistency in the 
model predictions of pureDS (almost 50% of the time-steps have inconsistent depth-density rela- tionships in its predictions). This 
makes  the  pureDS unfit for use in the process of scientific discovery, be- cause although it is able to somewhat improve the pre- 
dictions of the target variable (i.e. temperature), it is incurring large errors in capturing the physical relation- ships of 
temperature with other variables, leading to non-meaningful results. 
When the neural network is fed with the output from the physics-based model, PHY, we can see that the performance of 

the resultant model, PGNN0 im- proves in comparison with pureDS both with respect to RMSE as well as Inconsistency. This 
is because the output of PHY (although with a high RMSE) contains vital physical information about the dynamics of lake 
temperature, which when coupled with powerful data science frameworks such as deep learning, can result in major 
improvements in RMSE. Since the output of PHY is inherently designed to be physically consistent, using 

PHY also helps in achieving a lower value of Inconsis- tency in PGNN0. However,  this value is still close to 20%, which is 
considerably high from an operational perspective. It is only by the use of physics-based loss functions that we can achieve not 

only a lower RMSE than PGNN0, but a substantially lower Inconsistency. Hence, the framework of PGNN shows promise in im- 
proving both the physical consistency as well as gener- alizability of the model predictions. 
 

Conclusions and Future Work 
This paper presented a novel framework for learning physics-guided neural networks (PGNN), by using the outputs of physics-
based model simulations as  well as by leveraging physical relationships to enforce scientific consistency on the neural network 
predictions. By an- choring deep learning methods with scientific knowl- edge, we are able to show that the proposed frame- 
work not only generates physically meaningful results, but also helps in achieving better generalizability than black-box data 
science methods. 

We anticipate this paper to be the first stepping stone in the broader theme of research on using physics- based 
learning objectives in the training of data science models. While the specific formulation of PGNN ex- plored in this paper 
was developed for the example prob- lem of modeling lake temperature, similar developments could be explored in a number 
of other scientific and engineering disciplines where known forms of physical relationships can be used to guide the 
learning of data science models to physically consistent solutions. This paper paves the way towards learning neural 
networks by not only improving their ability to solve a given task, but also being cognizant of the physical relationships of 

• 

• 
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the model outputs with other tasks, thus producing a more holistic view of the physical problem. 
There are a number of directions of future research that can be explored as a continuation of this work. First, for 

the specific problem of lake temperature mod- eling, given the spatial and temporal nature of the prob- lem domain, a 
natural extension would be to exploit the spatial and temporal dependencies in the test instances, e.g., by using recurrent 
neural network based architec- tures. Second, the analysis of the physically consistent model predictions produced by  
PGNN  could  be  used to investigate the modeling deficiencies of the baseline physics-based model in detail. Finally,  while  
this  pa- per explored the use of physical relationships between temperature, density, and depth of water in the learn- ing 
of multi-layer perceptrons, other forms of physical relationships in different neural network models can be explored as 
future work. Of particular value would be to develop generative models that are trained to not 

only capture the structure in the unlabeled data,  but are also guided by physics-based models to discover and emulate 
the known laws of physics. The paradigm of PGNN, if effectively utilized, could help  in  combining the strengths of 
physics-based and data science models, and opening a novel era of scientific discovery based on both physics and data. 
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