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Abstract- Using short-term spectral features to recognize children's speech is a challenging task. 

One explanation is that the way kids talk is really basic, as when they're still learning how to 

build frequency values. And when they develop into adults, their vocal apparatus changes too. 

Because of this, removing traditional short-term spectral features for speech recognition reliably 

becomes a challenge. Recent years have seen the development of new acoustic modelling 

algorithms that learn the function and television categorization from the raw speech signal in an 

end-to-end manner. We show that methods using children's acoustic modelling improve speech 

recognition using the PF-STAR corpus. 

Keywords--Children speech recognition, acoustic modeling, convolutional neural networks, 

end-to-end training. 

 

I. INTRODUCTION 

The task of linguistically transcribing the audio stream is known as automatic speech recognition 

(ASR). The goal of automatic speech recognition systems is to control data variability caused by 

several sources, including the acoustic environment (ray, canal conditions), the speakers (speaker 

variability), the vocabulary (out of words), and the style (effect on the articulation grade of 

continuous versus isolated speech). The linguistic and acoustic variety of children's voices 

remains an obstacle to children's speech recognition, even though the area of automatic speech 

recognition (ASR) has received a lot of attention. Specific auditory and linguistic characteristics 

of speaking to children include age-related changes in vocal geometry and anatomy, the ability to 

control articulators and prosody, and the range of language abilities [1]. Young people's speech 

is more spectral, formational, and fundamental than adults', according to acoustic research [1, 

2.3]. Issues arising from values close to the fundamental frequency (i.e., during the feature 

extraction phase of ASR systems) deconstruct and preserve information derived from the 

formants of the phoneme.In addition, children's ASR performance is worse than adults' because 

their speech formant values are more variable, leading to greater overlaps in their phonemic 

classes[1, 2, 4]. While agenetic models are employed to limit the acoustic area and decrease 

acoustic variability (thus, acoustic mismatch between children and adult acoustical spaces), 

methods such as normalising the Voice Length (VTLN), speakers, and adaptation to the model 

are employed [1]. From a linguistic perspective, children's varied pronunciations—which often 

include misspelt words and grammatical errors—are associated with deteriorating recognition 

abilities [6]. In an effort to conquer linguistic variety, pronunciation and language modelling 

have been the focus. A children's pronunciation-based lexicon was shown to be effective in 

identifying age-related pronunciation mistakes in children in [6], suggesting that accurate 
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pronunciation modelling might lead to improvements in recognition ability. Another reason 

young ASR are encountering challenges is that there isn't a big, publicly accessible corporation 

that talks to them. Results from cutting-edge children's ASR systems show promise in massive 

datasets [7]. For children with ASR, the authors of [8] suggest using stochastic feature mapping 

(S FM) to improve acoustic models based on GMM and DNN, respectively, in order to 

circumvent data limitations. This research primarily aims to examine ASR acoustic modelling in 

youngsters. In most cases, a model of speech production is used to extract short-term spectral 

features for language recognition. The goal is to capture information about the vocal tract system 

using this model. As previously stated, the findings from studies on "normal" adult speech have 

basically materialised and have the potential to influence acoustic models. There have been 

recent developments in end-to-end methods for learning features and the classifier from raw 

audio signals [9, 10, 11]. We demonstrate that automated feature learning may enhance children's 

ASR systems via an examination of this sort of method. Everything is laid out correctly on the 

page. Section 2 provides a synopsis of the end-to-end acoustic modelling methodology that 

underpins and promotes the present investigation. There is a discussion of the databases and the 

experimental setup in Section 3. We provide our results and analysis in Section 4. Section 5 

concludes the whole thing.  

 

II. RELATEDWORKS 

Conventional ASR systems (Fig.1-conventional method) optimise each subtask independently, 

breaking the task of speech recognition into several smaller tasks. The classifier and attributes 

are part of an end-to-end approach to acoustic modelling that was laid out in [12, 9]. As 

illustrated in figure 1, the CNN-based end-to-end acoustic modelling approach is built upon a 

feature-learning phase that uses multiple convolutional layers, a classification phase that uses 

fully connected (FC) layers, also called the multi layer perceptron (MLP), and an output layer. 

. 

 

Fig. 1: ASR system flow illustrating the conventional and proposed methods. 

This system's hyperparameters consist of the following: (i) the size of the speech input window 

(wseq), (ii) the total number of convolution layers (N), (iii) for every convolution layer i ∈ 

f{1..N}, the width of the kernel (kWi), the shift of the kernel (dWi), the number of filters (nfi), 

the maximum pooling size (mpi), and (iv) the number of hidden layers in the MLP. The original 



             Juni Khyat                                                                                  (UGC Care Group I Listed Journal)  

            ISSN: 2278-4632                                                                                 Vol-14 Issue-01 May 2024 

86 
 

research detected all of these hyper parameters via cross validation. The input talk's processing 

speed is likewise affected by this strategy. To be more specific, the frame size and frame shift 

that operate on the signal are the first kernel layer width (kW1) and the kernel shift (dW1), 

respectively, of the convolution layer. The processing of the first convolutional layer is shown in 

Figure 2. This system's frame rate is dictated by the shift of the input speech window of size 

wseq, which was set to 10 ms in accordance with standard practice. 

 

 
Fig. 2. Illustration of first convolution layer processing. 

It was initially discovered in [9] to use convolutional modelling on the "sub-segment," or a 2-

millisecond signal smaller than one pitch. Following two separate analyses of the filters—one 

using a spectral dictionary[12] and the other using back propogation[13]—the CNN learnt to 

model generating frequency information for post-probability evaluation of the phone. 

Furthermore, our approach outperforms the conventional cepstral functional system with fewer 

parameters, or at least provides comparable performance. In order to improve the performance of 

ASR systems for children, this research will use two features: automated functional learning and 

a reduced number of system parameters. 

 

III. CONFIGURATION SETTING 

This section discusses the databases and protocols first and then the created systems. 

Datasets 

The PF-STAR [14] and WSJCAM [15] programs were used for the speech tests involving 

children and adults, respectively. Two microphones were used to record utterances in British 

English for both datasets. With 140% of the speakers included, PFSTAR is a large vocabulary 

dataset. It includes 158 kids, ranging in age from four to fourteen years old. The webcam is 

WSJCAM0. Our team made use of the BEEP [16] lexicon for PF-STAR ASR. With the addition 

of CMU dictionary pronunciations for unseen words, we have used the standard BEEP lexicon 

protocol for WSJCAM0.In order to compensate for data shortages, models were trained using 

data from both the recorded channels (channel A, which included head-mounted microphones) 

and the far-field microphones (channel B), which were used in conjunction with PF-STAR. 

Neural network training makes advantage of the PF-STAR evaluation/adaptation data as a cross-

validation set. We provide findings separately for the A and B test channels.  

Training (train), development (dev), and test sets from the standard WSJCAM0 were used for the 

experiments. We used the standard 20k trigram LMs from the WSJ corpus to decode WSJCAM0 

utterances. One LM comes from the Witten-Bell-Smoothing training set and the other from 

Witten-Bell Smoothing with regular MGB-3 text [17]. This is how the PF-STAR language model 

was created. The two LMs have been linearly interpolated using weights selected according to 
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their concerns in the cross-validation set PF-STAR (discussed above) in order to exclude the 

lower probability using 10-8 as a cutoff.  

GMM-HMM systems 

All GMM-HMM systems might be trained with the help of Kaldi's toolbox [18]. Utilising 

standard training system protocols, we provide monophonous, triphonic, and LDA+MLLT 

variants, in addition to LDA+MLLT+fMLLR+SAT. All systems had a cap of 2,500 sheet nodes 

and 15,000 Gaussians for context-dependent clustering. The next day, SGMM networks 

consisting of 9,000 substates, 2500 leaf nodes, and 400 mixes per state were  

Table 1. CNN architectures. Nf : number of filters, kW: kernel width, dW: kernel shift, mp: max-

pooling. 

 

DNN-HMM systems 

Training the neural networks with the Tensorflow [20] backend was done using Keras [19]. With 

11-screen splicing and related coefficients, the feature used was a 429-size MFCC 13-size 

CMVN. A softmax output layer with activation using a rectified linear unit (ReLU) followed by 

one or three hidden layers, each with 1024 nodes, made up the DNNs, which were known as 

DNN1 and DNN3. For single-phone states, SGMM clusters were designed, while for triphone 

systems, monophone DNNs were envisioned. It was the alignments from those systems that were 

used to train the systems. The default parameters for DNNs in Keras were initialised using the 

Glorot uniform distribution approach. During training, all layers except the final one were 

subject to a 20% reduction using a cross-entropical loss and stochastic gradient descent. Half of 

the learning rate fell within the 10-1 to 10-6 range after cross-validation loss stopped dropping. 

Used to decode or forcefully align neural networks in Kaldi, they are scaled up by priors, which 

are generated from training objectives. The GMM-HMM system they learnt from during 

decoding was used to determine the likelihood of the HMM state change. When deciphering 

Since the alignments produced by the monophone system were subpar, an alignment technique 

employing the DNN-HMM system was implemented after the DNN training. Afterwards, the 

DNNs were re-exercised at random. It has already been said twice. 

 

CNN-HMM systems 

In order to train the CNNs, Keras-Tensorflow was used. With a 10ms shift, the raw speech 

signals were shown in 250ms blocks. Prior to feeding it into the CNN, each segment was 

normalised and removed mean (using its scalar average). The CNN architectures are shown in 

Table 1. A softmax output FC layer follows each convolutional neural network (CNN) that has 

one fully connected hidden 1024 node layer. The hidden FC layer was subjected to a 20% 
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dropout. The segment's centre labels, derived from the training alignments, were used to train 

CNNs. The DNNs' training procedures were same. 

 

IV. RESULTS AND DISCUSSION 

Table 2 shows the word error rates (WER) on the child speech test set (Channels A and B) while 

employing adult speech as well as speech-trained models. It is worth mentioning that CNN 

systems consistently outperform GMM/HMM and DNN/HMM. Additionally, SGMM systems 

are able to provide respectable outcomes by capitalising on data scarcity and decoding 

multipasses. It should be mentioned that, as far as we are aware, the best-reported PF-STAR 

corpus is 11.99% WER [21, 22]. Table 3 shows the impact on WER of incorporating data from 

children into adult ASR. By including data from children's voices, we may see that it reduces 

performance.  

In Table 2, we can see how WER compares to children's models and children+adult models on 

test data.  

 
Table 3. Comparison of WER on adult test data with adult models and adult+children models, 

showing the effect of adding children data on adult speech recognition. 

 
It was suggested in [12] to understand the data shown on the spectral dictionary's first 

convolutional layer. In previous studies, the method was used to comprehend the spectrum data 

represented by the convolutional neural networks (CNNs), as shown in references [23] and [24]. 
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This is how the filters' spectral reactions to the input language are calculated:s_t^cwas used as 

the section of input speech. Our research makes use of a 30-millisecond frame, which is 

comparable to that of conventional short-term processing, in order to keep things 

simple.Interspersed with dW samples (10 samples for CNN3, 5 samples for CNN4 and CNN5 

models), successive windows of kW samples (30 samples for all models) are extracted from 

s_t^c.Every time a new window signal (st) appears, the predicted outputs of the filters applied to 

the input speech signal (St) = St-(kW-1)/2….St + (kW-1)/2 are  

 

where fm denotes the mth filter in first convolution layer and yt[m] denotes the output of the mth 

filter at time frame t. 

The frequency response St of the input signal st is estimated as 

 
Based on the confusion matrix in [25], the subset of telephones and speakers were chosen. The 

30-ms-Frame from the steady-state area of/and/of the boy speaker displays spectral response in 

Figure 3 (b23). The formant values are often consistent with the range in the data set. In various 

vowels and speakers we saw comparable tendencies. 

 
Fig. 3. Average filter response for a speech segment /er/ from CNN3 trained on children speech 
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V. FUTURE SCOPE AND CONCLUSION  

In order to help youngsters learn a new language, this paper compares the conventional cepstral 

ASR method with a convolutional neural network (CNN) based end-to-end acoustic modelling 

approach that learns the important features concurrently with the raw language telephone 

categorisation. Based on our findings from the PF-STAR corpus, systems trained using CNN 

end-to-end acoustic modelling outperform their more traditional counterparts, such MFCCs. 

According to our results, the system might be much better if we supplement the input from 

children with adult voices. Analysing the trained CNNs revealed that they had mastered the art of 

representing formational information that remains constant across the acoustic variances between 

children's and adults' speech. 
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