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Abstract 

For greenhouse growers and farmers in general, accurate forecasts of plant development and productivity are critical. Growers can enhance 

environmental control, match supply with demand, and minimize costs by developing models that accurately forecast growth and output. 

Powerful new analytical tools may be gained from recent advances in Machine Learning and in particular, Deep Learning (DL). Tomato 

yield forecasting and Ficus Benjamin stem development will be predicted using ML and DL approaches in a controlled greenhouse setting in 

the proposed project. In the prediction formulations, we use a novel deep recurrent neural network (RNN) based on the LSTM neuron model. 

The RNN architecture models the intended growth parameters using the previous yield, growth, and stem diameter measurements, as well as 

microclimate circumstances. Support vector regression and random forest regression are compared in a researchutilising the mean square 

error criteria to assess the effectiveness of the various approaches. Results from the EU Interreg SMARTGREEN project (2017-2021) in two 

greenhouses in Belgium and the UK have shown great promise, according to the statistics given. 
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INTRODUCTION 

Plant development, like many other bio-systems, is a highly complex and dynamic system that is intertwined with 

the environment. Growing and yielding models are thus an important scientific problem. There are a lot of ways to 

model a problem (including, scale of interest, level of description, integration of environmental stress, etc.). 

"Knowledge-driven" or "data-driven" modelling are two primary techniques, according to (Todorovski and 

Demoski, 2006; Atanasova et al., 2008). The method based on existing domain knowledge is referred to as a 

"knowledge driven" one. Data-driven modelling, on the other hand, does not need the use of domain expertise to 

create a model. There are a variety of data-driven models (DDMs) that incorporate machine learning approaches 

such as neural networks, support vector machines, and generalized linear models (Poteau et al., 2012). Methods like 

this offer a wide range of desired. 

 

features, such as the capacity to approximate nonlinear functions, the ability to forecast accurately and the ability to 

handle a wide range of inputs (Buhmann, 2003). Regression analysis, linear polarizations, wavelet-based filtering 

and vegetation indices (NDVI) are the most often used approaches for assessing agricultural data, according to 

Singh and Liakos et al. (2016) and Liakos et al. (2018) respectively. A new approach, deep learning (DL), has lately 

gained traction in addition to the aforementioned methods (Goodfellow et al., 2016). According to Wikipedia, DL is 

part of the machine learning area and is quite similar to an ANN. Deep learning is about "deeper" neural networks 

that give a hierarchical representation of the data through different operations. This provides for more learning 

capabilities, resulting in greater performance and accuracy. As a result of feature learning, raw data may be 

automatically analyzed for characteristics that can be used to build higher-level hierarchical features (Goodfellow et 

al., 2016). Because of the complexity of the linked models, DL is especially good at solving increasingly 

complicated issues (Pan and Yang, 2010). It is possible to improve classification and regression accuracy with the 

use of DL's sophisticated models, but only if big data sets are available to describe the issue. Comparative studies of 

ANN, SVR, M5-prime, KNN and Multiple Linear Regression for agricultural yield prediction were reported by 

Gonzalez-Sanchez and colleagues (2019). There were four accuracy measures that were employed in their study: 

root mean square error (RMS), root relative square error (RRSE), normalized mean absolute error (MAE), and 

correlation factor. Among the crop yield models tested, M5-Prime exhibited the fewest mistakes. M5-Prime, SVR, 

ANN, and MLR were found to be the top and worst algorithms rated according to RMSE, RRSE, R, and MAE in 

that research. Nair and Yang-Won (2016) used four machine learning algorithms to predict corn yield in Iowa State, 
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including SVM, Random Forest (RF), Extremely Randomized Trees (ERT), and Deep Learning (DL). DL was 

shown to be more stable, addressing the issue of overfitting, based on comparisons of validation data. During the 

vegetative development stage, stem diameter is one of the most significant criteria to describe plant growth. Stem 

diameter variation has been utilized extensively to develop proxies for plant water status, which has been employed 

in a broad variety of species to optimize plant-based irrigation scheduling. An indication of changes in plant water 

content may be found in plant stem diameter variation (SDV), which is a measure of plant stem shrinkage and 

recovery over the course of the day and night. Crop plants depend on photosynthesis and the transport of photo-

assimilates from the site of synthesis to sink organs for glucose during active vegetative growth and development 

(Yu et al., 2015). In a large body of literature, the foundations of stem diameter variation have been thoroughly 

examined and recorded (Vandeguchte et al., 2014). Soil dissolved volume (SDV), which is intimately linked with 

agricultural plant responses to environmental changes, has been established (Kanai et al., 2008). Crop plants under 

abiotic stress during the vegetative development stage have a significant impact on stem diameter. In order to 

forecast the reaction of SDV to environmental changes and plant development under diverse situations, stem 

diameter growth models must be developed. SDV models for assessing the influence of the environment on crop 

development need to be critically reviewed and improved, according to several research (Hinckley and Bruckerhoff, 

2011). Accurate inter-annual variance in yearly growth of the balsam fir (Abies Bernama L) has been reliably 

predicted using SDV daily models (Duchesne and Houle, 2011). By including daily data into growth-climate 

models, researchers may better forecast the possible growth response to climate by detecting specific climatic events 

that would otherwise go unnoticed by a dendroclimatic method (Duchesne and Houle, 2011). However, models that 

use environmental factors to predict SDV and plant development are still in their infancy. Few models have been 

investigated for tomato crop growth in greenhouse environment as a dynamic and complicated system. As far as 

dynamic growth models are concerned, Jones et al. (Jones, 1999) and Heuvel ink (1996) use TOMGRO and 

TOMSIM (Heuvel ink, 1996). Models of crop development and production are based on physiological processes, 

and they are influenced by a variety of climatic and physiological variables. As a result of their complexity, limited 

practical use, difficulties in determining starting parameter values and the need of calibration and validation in each 

new environment, growers have been restricted in their acceptance. Based on the weight of gathered fruits, the 

Tomosesmodel was created by Abreu et al. (2000). Environmental characteristics in a heated greenhouse in southern 

France were examined to construct the model. This model assumed a linear connection between the pace of 

blooming and the rate of fruit development. When tested in Portugal in unheated plastic greenhouses, the model's 

performance was low. Using a graphical modelling program, Adams (Adams, 2002) came up with another tomato 

yield model (Adams, 2002) Modeling weekly variations in greenhouse tomato productivity in terms of fruit size and 

harvest rate was the primary goal. Leaf truss growth and flower output were estimated using hourly climatic data. In 

general, seasonal differences in solar radiation and air temperature have a significant impact on crop yields. Many 

tools exist to assist farmers in making choices (Qadim et al., 2013), according to (Qadim, 2013). It's possible to 

anticipate yield rates, provide climate control suggestions, and time agricultural production to match market needs 

using these. An environmental (CO2, humidity, radiation, outside temperature, inside temperature) as well as actual 

yield and stem diameter variation measurement-trained deep learning model is proposed in this paper and has the 

ability to accurately predict stem diameter problems in Ficus trees and tomato yield problems in tomatoes. Listed 

below are the sections of this document. Described in Section 2 are the suggested technique and datasets that will be 

used. Section 3 displays the outcomes, and Section 4 concludes and plans for the future.. 

MATERIALS AND METHODS 

Conventional Machine Learning 

Machine learning (ML) algorithms can solve complex, non-linear problems on their own, employing data from a 

variety of different sources. Artificial intelligence can make better decisions and take more informed actions in real-

world situations with little or no human involvement. Data-driven decision making may be applied to a broad range 

of industries, including agriculture, thanks to this strong and versatile platform. Accurate predictions of plant 

growth, yield, and output have been made using various machine learning algorithms in recent years. For example, 

artificial neural networks, SVR, M5-prime regression trees, Random Forests, and K-Nearest Neighbors are the most 

effective algorithms (Culinarian et al., 2018). SVR and RF models are utilized as baseline models in this work to 

forecast plant production and growth. 
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Support vector regression (SVR) 

Vapnik's Generalized Portrait technique was generalized nonlinearly to produce Support vector regression (SVR) 

(Cortes and Vapnik, 1995). It uses a kernel function to transform the input data into a higher-dimensional space and 

a hyperplane to segregate various types of data. The regularization parameter c regulates the trade-off between 

margin and mistakes. Radial basis kernel functions (Serb) use K(xi, Xu) = exp (xi – Xu–2) as the kernel function. As 

you can see, the radial basis function requires that y be a constant. 

Random forest (RF) 

Ensemble learning methods like RF date back to Ho's work from (Ho, 1998). RF utilizes decision trees as the 

ensemble's primary base learner. It is argued in ensemble learning that it is not possible to accurately forecast the 

intended value of test data by using just one predictor. The reason for this is because a single predictor cannot tell 

the difference between random noise and actual patterns based on sample data. A bootstrap sample of the training 

data is selected for each separate regression tree. Because of this, the regression tree grows until it reaches its 

maximum size. A weighted average of the predictions from each regression tree is used to arrive at final prediction 

values (Bierman 2001). 

Deep learning (DL) 

Traditional machine learning (ML) models are augmented with "depth" (complexity) and other functions that 

generate data representations hierarchically, via numerous abstraction layers. To get the most out of DL, it's 

important to use feature learning, which involves automatically extracting features from raw data and then 

composing higher-level features from the constituent parts. Due to the use of increasingly complicated models and 

huge parallelization, DL is able to tackle difficult problems quickly and efficiently. If the datasets characterizing the 

issue are big enough, the sophisticated models used in DL may improve classification accuracy or minimize 

regression error. Convolutions, pooling layers, fully connected layers, gates, memory cells, activation functions, 

encoding/decoding techniques, depending on the network architecture employed, such as Convolutional Neural 

Networks, Recurrent Neural Networks, Unsupervised Networks (Kamila is et al., 2018). 

Long short-term memories (LSTM) 

Initial development of the LSTM model was aimed at modelling long-term dependencies and establishing the best 

time delay for time series issues (Hochreiter and Schmid Huber, 1997). One input layer, one recurrent hidden layer, 

and one output layer make up an LSTM network. There are two types of adaptive, multiplicative gating units in the 

hidden layer: one controls information flow and contains memory cells with self-connections to save the temporal 

state. Constant Error Carousel (CEC) is the memory cell's primary recurrently self-connected linear unit, and the cell 

state is represented by the CEC activation. Learning to open and shut the multiplicative gates takes place over time. 

The vanishing gradient issue in LSTM can be overcome by keeping the network error constant. When learning 

lengthy time series, a forget gate is added to the memory cell, which prevents the gradient from expanding. An 

explanation of the workings of LSTM may be summarized in this way: 
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Input, forget, and output gates are marked by it, it, and yet, while the hidden state and cell state of the memory cell 

are represented by mt and CT respectively. 

Microclimatic measurements 

DL and ML models were applied to data from four cultivation tables in a 90 m2 greenhouse compartment at the 

Ornamental Plant Research Centre (PCS) in Nesselberger, Belgium, where we studied Ficus plants. Approximately 

15 pots per m2 were filled with 3 cuttings each. Window apertures, a thermal screen, an air heating system, 

assimilation light, and a CO2 addition system were all used to regulate the greenhouse's environment. A time and 

radiation sum-controlled automated flood irrigation system was used to water the plants. The microclimate and 

irrigation controls were set at the same level as those used in commercial greenhouses. The greenhouse's 

microclimate was monitored constantly. A LI-190 Quantum Sensor (LI-COR, Lincoln, Nebraska, USA) and a 

carbon dioxide probe (Vaisala CARBOCAP GMP343, Vantaa, Finland) were used to detect PAR and CO2 

concentration, respectively. A temperature and relative humidity probe (Campbell Scientific CS215, Logan, UT, 

USA) was put in a vented radiation shield to detect temperature and relative humidity. A linear variable 

displacement transducer (LVDT, Solectron, Bogner Regis, UK) sensor was used to continually measure the stem 

diameter of these plants. When the present stem diameter was compared to the diameter measured an hour earlier, 

the hourly fluctuation rate (mm d 1) was determined as the difference. Data from a UK Greenhouse farm was used 

to train the DL and ML models in the second experiment. This included both environmental (CO2, humidity, 

radiation, outside temperature, interior temperature) as well as yield real measurements. The yield was measured 

monthly, while environmental data were recorded hourly. Because of the irregularity of the weekly readings, we 

used data augmentation to provide daily data measurements. We also averaged the hourly environmental data to get 

daily representations that were comparable. These datasets were then divided into training, testing and validation 

sets in each studies. In all, 60 percent of the collected data was allocated to the training set, 15 percent to the 

validation set, and 25 percent to the test set. 

Prediction evaluation 

For assessing the accuracy of these forecasting models, researchers employed the MAE, RMSE, and MSE metrics 

(mean squared errors). In the following equations, the formulas for various assessment measures are shown: 
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RESULTS AND DISCUSSION 

Plant yield and growth in greenhouse conditions may be predicted using DL (LSTM), SVR, and RFR prediction 

models that we've created and validated. These models have been used to forecast Ficus growth using the SDV 

indicator, as well as tomato production predictions. The parameters of each model were determined using the grid 

search approach. The SVR model design relied heavily on the gamma and C parameters. The number of trees and 

the maximum depth of the tree were critical considerations in the creation of the RF model. For the DL LSTM 

model, it was critical to consider the number and size of hidden layers. There were three stages in the strategy that 

was put into action: • Data pre-processing and data cleansing. • Training, validation, and test datasets may be 

divided into three separate datasets. • Design and implementation of DL/LSTM, SVR, and RF models for one-step 

forward prediction. In both studies, the DL/LSTM model beats the SVR and RF models, demonstrating its 

superiority. MSE, RMSE, and MAE are shown in Table 1 for each of the three (trained) models on the test datasets 

in both studies. Table 1 compares the DL/LSTM model's performance to those of the SVR and RF models in 

predicting plant production and growth. 

 

Figure 1 shows how prediction models perform (RF, SVR and LSTM). In terms of predicting Ficus growth (SVD), 

the LSTM model beat both RF and SVR. RF and SVR models were unable to generalize as well as the LSTM 

model, as shown in Figure 2, which exhibited a greater capacity to capture the temporal aspect of the presented data. 

CONCLUSIONS 

Researchers in this study used an artificial neural network (ANN) to predict the SDV of Ficus and tomato yields, 

with good accuracy in both cases. In terms of MSE, RMSE, and MAE error criterion, experimental findings showed 

that the DL approach (using an LSTM model) outperformed other classic ML techniques like SVR and RF. That's 

why it's important to us that we apply deep learning methods to anticipate plant growth and productivity in a 

greenhouse setting. Next steps include: a) expanding the DL approach to conduct multi-step (weekly, or multiple-

week) prediction of growth and yield in various greenhouses in the UK and Europe; and b) increasing the quantity of 
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gathered data that are utilized for training the suggested DL methods.

 

 

Figure 1. Testing results and performance comparison of Ficus growth (SVD) predictions. 
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