
JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

Development and Maintenance of aWeb Site for a Bachelor Program

Dr J Rajaram Professor Ph.D ----CSE

E Ravi Assistant Professor M.Tech—CSE

D Navya,Assistant Professor

Donda Prashanth,Assistant Professor

Nagole institute of engineering and technology

Abstract

This paper describes our experiences with the development and maintenance of the BSENG Web site, which

providesinformation about a new Bachelor program for softwareengineering at the University of Victoria. The

site’srequirements lead to a design that emphasizes simplicity toease maintenance. We used Macromedia

Dreamweaver todevelop the site. During development, we identified twoimportant maintenance tasks—detection of

dead links andpreservation of the site’s navigational structure—that arenot well supported by Dreamweaver. We

discuss how weuse the Rigi reverse engineering environment to aid the Website developer with these maintenance

tasks.

1. Motivation

Nowadays, many Web sites are highly complex softwaresystems [17]. At the same time, Web sites are

oftenimportant assets for an organization. In response tothis need, many professional development tools that

supportthe building of sophisticated Web sites have emerged(e.g., Macromedia’s Dreamweaver, IBM’s

WebSphere, andAdobe’s GoLive). However, despite tool support, the currentpractice of Web site development

is still immature anddoes not adhere to software engineering principles [18]. Forexample, often there is no

design or system documentationavailable [22].The first release of a Web site is only the beginning ofits lifetime.

A Web site has to constantly evolve in orderto remain useful for its users. Because Web site maintenanceis

costly and continuous, Web site developers have toemploy tools and techniques that also assist them in

theirmaintenance tasks.The Web site’s source code (typical artifacts are HTMLpages, client-side and server-

side scripts, and configurationfiles) is the most reliable and detailed information availavailableto the developer.

But often higher-level abstractionsare equally important to facilitate the understanding of theWeb site for

development and maintenance activities; reverseengineering is concerned with the generation of

suchdocumentation. Development tools often focus on the forwardengineering aspect of software development,

but neglectthe reverse engineering aspect.In this paper, we illustrate with a case study how we usedreverse

engineering technology in addition to a commercialWeb development tool in order to improve the

developmentand maintenance of a Web site. Our case study is BSENG,a Web site for a new Bachelor program

for software engineeringat the University of Victoria. We decided to buildBSENG with Macromedia

Dreamweaver since it is a mature,commercial tool that fits well into our environment.However, during the

development of the BSENG Web site,we identified two important maintenance tasks—detectionof dead links

and preservation of the site’s navigationalstructure—that are not well supported by Dreamweaver.

Wecustomized the Rigi reverse engineering environment [25][24] to visualize dead links as well as BSENG’s

(navigational)structure. The documentation produced with Rigi iscomplementary to the information that

Dreamweaver providesand gives the BSENG developer valuable, additionalinformation for recurring

maintenance tasks.The paper is organized as follows: The next section identifiesthree different views of a Web

site and their relationships.Section 3 gives more background on our case study,BSENG. Section 4 discusses the

problem of dead links andhow we customized Rigi to visualize them. Section 5 showshow Rigi visualizes Web

site structure and Section 6 closeswith some observations and future research directions

.2.Web Site Views

For both development and maintenance phases, it is importantto distinguish between the different views of a

Website. We discern the following views:client view: The view of the Web site that a client (typicallyusing a

Web browser) sees.deployment/server view: The view of the Web site that aWeb server (accessing the local

file system) sees.developer view: The view of the Web site that a developer(using a Web development tool

such as Dreamweaver)sees.Reverse engineering tools can operate on any of theabove views. The reverse

engineering process starts withfact extraction from one (or several) views. Extracted factsare typically stored in

a repository, which is then queriedby analyses. Analysis results are then visualized to assist indevelopment and

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

maintenance activities.Depending on the view, fact extraction uses different extractionstrategies and extracts

different artifacts. In the following,we discuss each view in more detail and give examplesof reverse

engineering tools and extractors. Traditionalstand-alone extractors for Web sites work either onthe client view

or on the deployment view

.2.1. Client View

Client-side extraction does not require direct access to aWeb site’s sources, but the Web server has to be treated

asa black box; only its output (i.e., served Web pages) can beobserved.Examples of client-view extractors are

essentially Webcrawlers or spiders. These extractors request pages viaURLs, communicating with the Web

server via HTTP. Forexample, the strategy of SiteSeer—a tool to collect Webmetrics—is typical for client-view

extraction [29]:“Beginning at a known URL, SiteSeer spawns achild process to parse the html document

whichwill be found there. Each link found within thehtml text will be added to a links file producedby the child,

and ultimately returned to the parent.The parent will spawn a new child for each ofthese new links, so that the

whole hyperdocumentis eventually examined. . . . This search, whichis initially exponentially increasing, is

limited bythe ’edge’ of the website; that is, html documentsoutside the initial website are not parsed,

althoughthe links are followed to ensure the URLs aregood.”SiteSeer’s parser is implemented with Lex and

Yacc. Similarly,Perlbot is a web crawler written in Perl that gathersmetrics for a Web site to help understand its

evolution [12].Ricca and Tonella have developed the ReWeb tool,which consists of an extractor, analyzer, and

viewer forstatic Web sites [19] [20]. The extractor, written in Java,downloads all pages of a certain Web site

starting from agiven URL. Links in pages that point outside the Web siteare ignored. The extracted Web site is

represented as atyped, directed graph. The ReWeb tool has several analysesthat operate upon the graph

structure. Most of these areinspired by traditional compiler (flow) analyses and mappedto the Web site domain

(e.g., dominators of a page, shortestpath from the start page to a page, and strongly connectedcomponents).

Results of analyses are visualized with Dotty[16] (a customizable graph editor).2.2. Deployment ViewMost

reverse engineering research has targeted the clientview, but more deployment-view extractors are emerging.A

deployment-view extractor has access to the Web site’ssources (such as HTML pages, CGI scripts, Java

SeverPages, and configuration files).Hassan has developed coarse-grained deployment-viewextractors for

HTML, JavaScript, VBScript, SQL databaseaccess, and Windows binaries [9]. During the extractionprocess,

each file in the directory tree that contains the Website is traversed and depending on the file type the

correspondingextractor is invoked. Extracted facts are representedin the Tuple Attribute (TA) format [10]. All

extractoroutput is consolidated into a single file and visualized withthe Portable Bookshelf system [7] for the

purpose of Website architecture recovery.Di Lucca et al. describe a reverse engineering processforWeb sites

that employs both static and dynamic analysis[3] [4] [5]. For the static analysis, facts are extracted fromHTML

pages, client-side scripting languages (JavaScriptand VBScript), server-side scripting languages (ASP andPHP),

and the directory structure. These facts are representedin a proprietary, XML-based format called IRF,which is

translated to a relational database (comprising aschema with 74 tables). Analyses use SQL on the

relationaldatabase to retrieve facts. Several graph drawing tools(Rigi, VCG, and Dotty) are used for

visualization

.2.3. Developer View

To our knowledge, neither extractors nor analyses for thedeveloper view have been developed by the reverse

engineeringcommunity. Development tools expose the developerview to the Web site developer, but they are

geared towardsforward engineering as opposed to reverse engineeringfunctionality needed for maintenance

activities.A study of three commercial tools (FrontPage 2000,Dreamweaver UltraDev 4, and SmartSite 3)

conducted byTilley and Huang in 2001 came to the conclusion that alltools had limited capabilities with regard

to supporting reverseengineering activities [23]. Maintenance activitiesthat are supported by these tools are, for

example, validationProceedings

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

Figure 1. Generative aspect of Web site views

of HTML and XML documents, reports of usage-violationsof ALT and META tags, link checking, metrics that

summarizecharacteristics of Web pages, and page download-timeestimates.Fortunately, Web site development

tools such asDreamweaver and GoLive have now scripting capabilitiesand expose tool functionalities with a

programmable API.These API scripts can be used to automate recurring developmentactivities, but also make it

possible to implementdedicated reverse engineering functionality

.2.4. Relationship of Views

All of the three views introduced above are of potentialinterest to the Web site maintainer. For example, the

developerview shows the high-level Web design such as informationabout templates; the deployment view is

the one theWeb server uses and thus important for server maintenance;finally, the client view is the one that the

user sees and thusis important to assess navigability and structure of the siteas well as to detect dead links. The

maintainers have to takeinto account the characteristics of the view that they workwith.Analyses that rely on

facts extracted from the client ordeployment view can give misleading information to themaintainer of a Web

site. An example is clone detectionof HTML and embedded scripting [11]. If Web pages aregenerated from

templates (which is supported, for example,by GoLive, Dreamweaver, and certain Wikis), a clonedetection

analysis (operating on the deployment or clientview) will report a large amount of cloned material.1

Theseclones, however, are of no concern to the maintainers, becausethey are working in the developer view,

which exposesthe templates to them.1Dreamweaver can export HTML comments that function as meta-datato identify templates in

the generated HTML page. A dedicated clonedetection algorithm could make use of this information to suppress clonescaused by templates.
However, the exporting of meta-data information istypically didisabled to optimize bandwidth in the deployed version of theWeb

site.Many of the differences in the views are caused by generativetechniques that connect the views.

Mechanisms suchas templates at the developer view drive the generation oftarget code (often off-line) for the

deployment view. Dynamic,server-side technology (such as JSP and servlets)in turn generates on-the-fly target

code for the client view.Another example of differences between deployment andclient view are the potentially

complex mappings fromURLs to file-system paths that are dynamically performedby the Web server (governed

by the server’s configurationfiles). These relationships between the views are depictedin Figure 1.Little

attention has been paid so far to the particular reverseengineering problem caused by systems that have

agenerative component; this is the case for Web sites as wellas traditional software systems. It is now common

to findWeb sites that employ generative techniques. Traditionalsoftware also uses generators such as compiler

compilers(e.g., Yacc), embedded languages (e.g., ESQL in C), ordomain-specific languages [27]. To give an

example, Deanand Chen describe the design recovery for a traditional softwaresystem consisting of a textual

domain-specific language(S/SL) with a generator that produces PT Pascal code[2].In order to analyze such

systems, the reverse engineeringtool must be targeted to a specific generator. Ideally,an analysis should identify

mappings from pre-generationartifacts to post-generation ones and vice versa.3. BSENGWeb SiteThe

Bachelor of Software Engineering (BSENG) is anew interdisciplinary program offered by the Faculty of

Engineeringat the University of Victoria (UVic). The programis scheduled to start in autumn 2003 with an

initial enrollmentcapacity of 75 students per term. One of the authorsof this paper was in charge of the initial

development of theBSENG site.The BSENG Web site is located at the domain http://www.cs.uvic.ca

(see Figure 2).2 The BSENG Website is a recruitment tool and information source for potentialapplicants to the

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

program. While populating the sitewith material, it became clear that the site is also an importantresource for

members of the faculty and committeesinvolved in the program. The site currently provides informationabout

the curriculum, course structure, programrequirements, application procedures, contacts, as well aspromotional

and program-related download material (e.g.,class room slides, presentations, and program proposals).As the

BSENG program grows and matures, theWeb site isexpected to evolve accordingly.

Figure 2. Screenshot of BSENG home page

home pageThe BSENG site has high textual information content, which will change rather infrequently once

the BSENG programis established. However, new information will beadded to the Web site continuously. In

order to simplifythe process of adding new information, we decided on alist structure for each page with a table

of contents on topfrom which the user can jump to the detailed information onthe page. Specifically, with about

50 courses and the limitedtypes of changes, we decided that there is no need fordatabase-driven dynamic Web

pages.2This paper describes the first version of the BSENG site. Since theacceptance of the paper, a new version has been published on

June 19,2003.We further decided on an easy-to-navigate and fastloadingdesign that is accessible for a wide variety

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

ofbrowsers. The latter is of special importance in academicenvironments, which typically exhibit a

heterogeneous infrastructure.Another important aspect of keeping the design simplerefers to maintenance and

costs. In research and educationcommunities turnaround times of Web site administratorsare short. We also

took the following considerations intoaccount:• On the user side, Nielsen observes that “users haveless patience

for bleeding-edge technology these daysas the Web gets dominated by later adopters and theupgrade speeds for

new browsers and plug-ins slowdown” [15].• On the developer side, Schmeiser advises to subjectany Web

technology to a rigorous screening beforemaking a decision to adopt [21]. Questions to ask are,for example,

“Will this solution save me resources?”and “Will this technology be time-intensive to extractfrom my system if

I decide to replace it?”As a consequence, an overriding principle for the BSENGWeb design was the KISS

principle: Keep It Simple, Stupid.Despite the simple design outlined above, we aimed for aprofessional, colorful

design that might appeal to students,who have come to expect Web sites that exhibit a high professionalismand

quality

.3.1. Site DevelopmentThere is a staggering variety of technologies, standards,and tools to choose from when

developing aWeb site. OftenWeb sites try to employ the latest cutting-edge techniqueswithout regards to the

site’s clientele as well as developmentand future maintenance implications. According toour considerations for

maintenance outlined in Section 3.2,we consciously tried to avoid advanced features of the toolin favor of

simpler, proven technologies.The BSENG site is static, which means that pages arecomputed at application

definition time and remain immutableduring application usage [8]. This is in contrastto dynamic sites where

pages are computed on-the-fly andcan change during application usage. Our site is Level 0(i.e., “only HTML

pages without frames”) according to theclassification introduced by Ricca and Tonella [19]. The siteuses plain

HTML 4.01 without frames. The page layout iscontrolled with nested tables.We exploit cascading style sheets

(CSS) for accessibilitypurposes. They are mainly used to set font sizes and colorswithout affecting the

navigation of the Web site. In the firstversion, we did not use client-side scripts, but we will usethese for future

versions, for example, to adapt the layoutdepending on the detected browser type.The BSENG site has been

developed with MacromediaDreamweaverMX , an integrated development environmentfor Web site

development. Dreamweaver is available forboth Windows and Mac, which is an important considerationin our

university environmenz where the site is beingmaintained.

Figure 3. Developer views of the BSENG site

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

in Macromedia Dreamweave

Dreamweaver supports multiple editing views for a page.The WYSIWYG view (cf. large window of Figure 3)

allowsediting of the page without an in-depth knowledge ofHTML. If a page is based on a template, only

certain partsof the page can be edited. The code view (cf. top windowof Figure 3) shows the deployment view

of the page (optionallypretty-printed). Similar to the WYSIWYG view,code that defines the template cannot be

modified. Eitherview can be edited during development and both views aresynchronized.An advanced feature

of Dreamweaver that we decidedDreamweaver supports multiple editing views for a page.The WYSIWYG

view (cf. large window of Figure 3) allowsediting of the page without an in-depth knowledge ofHTML. If a

page is based on a template, only certain partsof the page can be edited. The code view (cf. top windowof

Figure 3) shows the deployment view of the page (optionallypretty-printed). Similar to the WYSIWYG

view,code that defines the template cannot be modified. Eitherview can be edited during development and both

views aresynchronized.An advanced feature of Dreamweaver that we decidedoff-line with an API script (cf.

Figure 1) that is invoked bythe developer before deploying the site.

Figure 4. Statistics of the BSENG

 siteFigure 4 shows some statistical information for theBSENG site taken from Dreamweaver’s developer

view.The site has only 28 pages (half of which are pages for theprint view), but a rather large number of links

3.2. Site Maintenance

The maintenance aspect of aWeb site must be taken intoaccount right from the start of theWeb site development

effort.In fact, the maintenance aspect of Web sites is oftenneglected. Nielsen lists “Forgetting to Budget for

Maintenance”among his Top Ten Mistakes of Web Management[14]. The choice of technologies and tools has a

significantimpact on the future maintenance effort.For the BSENG site we chose to simplify maintenanceby

employing a small set of simple, well-established technologies.We consciously avoided approaches that have

anegative impact on maintenance; specifically:• No advanced HTML features such as frames andclient-side

image maps.These are often hard to understand for maintainers wholack a Web development background and

can causeproblems when migrating to anotherWeb developmenttool.• No JavaScript for important functionality

such as linknavigation.If a JavaScript cannot be properly executed (e.g., becauseit is broken or has been

disabled by the client) itshould not degrade the usefulness of the site (e.g., interms of navigability).• No sever-

side scripting (such as JSP, PHP, or ColdFusion). This simplifies configuration and updating of the Websever as

well as eases migration to anotherWeb server.It also simplifies maintenance of the Web site itself.For these

reasons we decided to keep the BSENG sitestatic by generating the print view of the pages off-line.• Limited

use of technology and features that are specificto the development tool.This mitigates vendor lock-in in case

there is the desireto change the development tool. Worse, sometimes aneeded update of the development tool

forces the developerto migrate code—the consequences and costsof such a migration are hard to predict.As an

example, Toeter describes the migration of severalWebsites at the University of Amsterdam to a newversion of

the ColdFusion Markup Language (CFML)[26]. 12000 lines of code had to be migrated fromCFML 1.0 to 4.0

because the ColdFusion developmenttool ceased to support the old CFML version.The migration had to deal

with technological changes,changes in the tool, and non-backwards compatiblechanges in the CFML. We hope

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

to avoid such migrationsscenarios for the BSENG site.During the development of the BSENG site, we noticed

twoimportant tasks that we expect will remain critical duringthe maintenance and evolution of the site:1. Dead

links both within the site and as the result of linkrot.2. Ensuring the integrity of the site’s navigational

structureUnfortunately, both of these tasks are not well supported byDreamweaver. As a response to this gap in

tool support, wecustomized the Rigi reverse engineering environment. Wediscuss the tool support that Rigi

provides for the maintainerin more detail in Sections 4 and 5.During development and maintenance

activities,Dreamweaver and Rigi are used alternately. Typically,the Web developer first modifies the Web site

withDreamweaver and then deploys the new site on the server.Once deployed, the Web site is crawled and its

structurevisualized in Rigi. The visualization allows the maintainerto identify problems such as dead links,

which leads to asubsequent maintenance activity with Dreamweaver.4. Dead LinksMaintenance is

constantly necessary even if theWeb siteitself does not change—the reason being that the environmentin which

the Web site operates changes. This oftencauses links to pages that point outside of the Web site tobecome

unreachable. (This phenomenon has been dubbedlink rot [6].) In a study conducted by Linos et al., four out

ofnine Web sites had more than one percent of broken links;one site had as many as 7.5% dead links [12].

Another studyconducted in 1999 found that 5.7% of links on the Web arebroken.33Available at

http://www.pantos.org/atw/35654.html.Figure 5. Dreamweaver’s link checkerDreamweaver has a

link checker that reports brokenlinks. However, the checker operates in the developer viewonly. This means that

the report is accurate for broken intrapagelinks (i.e., anchors), but can give false positives forlinks between

pages. False positives occur if mappings betweenthe deployment view and the client view are not

properlyresolved. The mapping of a link between the two viewsis governed by the Web server, which is not

taken into accountby Dreamweaver.Figure 5 shows part of the broken links reported for theBSENG site. In this

run of the checker, broken intra-pageand inter-page links are detected. During development,broken links often

act as to-do items indicating unfinishedwork.While Dreamweaver’s ability to detect broken intra-sitelinks is

useful for the Web site developer, it is too limitedbecause dead external links are missed. Dreamweaver listsall

external links, but does not check them. Thus, the maintainerneeds an additional tool that checks the client-

viewfor dead links.Web2Rsf, which has been previously developed by oneof the authors of this paper, extracts

the link structure (clientview) of a Web site for subsequent analysis [13]. The resultof the extraction is

visualized with the Rigi graph editor[25]. Rigi uses directed, typed graphs to process and displaythe data to be

analyzed. Rigi can be retargeted to differentdomains by defining a suitable schema that expressesthe types and

attributes of the arcs and nodes that constitutethe domain. In the Web schema that we defined, URLsare

represented by nodes and links between URLs by arcs.Different node and arc types are represented with

differentcolors (cf. Figure 7).There are different node types corresponding to differentURLs: HTML pages

(HTML, blue), image files (Image,

Figure 6. Rigi’s Web schema for BSENGbrown),

 mailto: (Email, green) etc. Files for downloading(e.g, PDF documents, ZIP archives, and Power-Point

presentations) are grouped in a single type (Other,purple). There are also two distinct node types to

indicatedead links (DeadURL, red) and syntactically incorrectURLs (MalformedURL, pink). Web2Rsf is

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

writtenin Java and reports a dead link if an input/output exceptionis thrown while connecting.Figure 6 shows

the Web schema that is sufficient tomodel the BSENG site. The schema is described with UMLand is similar to

the one developed by Conallen [1] and DiLucca et al. [5]. Web pages are modeled as classes; an associationis

used to represent hyperlinks. The complete RigiWeb schema is discussed in detail in a previous WSE

paper[13].The Rigi views of the Web site allow Web site authorsto readily locate internal and external dead

links. Web2Rsfdoes not check anchors, but these are reliably checked withDreamweaver. Figure 7 shows a

rendering of a previousversion of the BSENG site. This Rigi view shows 54DeadURL nodes, which are

rendered in red. No syntacticallyincorrect URLs were found. The site maintainer cannow filter out all the

working URLs to focus on the deadones. When inspecting the dead links, we found externalones (referring to

UVic’s online calendar) as well as internalones. Many broken internal links were caused by problemswith

wrong relative links in the print view. Furthermore, notevery page had a correct URL to its print view.5.

Navigational Structure

A well designedWeb site has an appropriate navigationalstructure that is apparent to its users and thus helps

them toeffectively find desired information.Ricca and Tonella discuss several recurring navigationalstructures

ofWeb sites [20]. A tree structure is acyclic andeach node has exactly one parent. A user navigates thetree

structure from top to bottom, making a choice at eachlevel. A fully-connected structure means that each

pagecan be reached by following a single link. An indexed sequencemeans that pages are arranged into a

single/doublelinkedlist. Pages within the list allow navigation to theirprevious/next page. Optionally, a table-of-

content page—from which all pages in the list are directly accessible—cansuper-impose a flat tree structure on

the list. The BSENGsite’s navigational structure is essentially a flat tree.Web sites can be composed of regions,

each one havinga different navigational structure. For example, a future versionof the BSENG site might

introduce a virtual tour of theUVic campus. This could be accomplished by adding anindexed sequence that is

anchored with a table-of-contentpage to the current tree structure.A well-engineered Web site should be

designed with acertain navigational structure and the structure should beclearly documented. Changes to a page

due to maintenanceactivities and evolution of the site should not (unintentionally)change or violate the

navigational structure.The navigational structure is determined by the linkageof client-view Web elements (e.g.,

HTML pages andmailto:). The Rigi Web schema describes these elements,and they are visualized in the Rigi

graph editor asnodes and arcs. Thus, Rigi graphs can help the maintainerto assess the site’s navigational

structure. Rigi graphs canbe layed out with a spring algorithm to expose clusters inthe site’s structure (cf. Figure

7). This allows the developerto assess the usability of theWeb site by evaluating thereachability of the most

important Web pages.Data gathered from Web server log files can be used toinvestigate usage patterns of Web

sites, i.e. which of theavailable links users actually followed and which of severalpossible paths users took to

locate theWeb pages they werelooking for. This allows the Web site authors to optimizethe structure of their

Web site to increase user satisfaction

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

Figure 7. Visualization of dead links in Rigiand thus the potential success of their Web site.Since the

BSENG site was still quite young and relativelyunknown at the time of our study, we were not ableto detect

browsing patterns of Web site users. The dataWeb2Rsf gathered from the log files still revealed some

interestinginformation when viewed in the Rigi graph editor.Web2Rsf records the number of accesses for every

successfuland unsuccessful page request. In the log file we analyzed,there were about 300 requests for the

BSENG startpage and about 130 requests for a file called robots.txt.By convention, this file is used to

inform web spiders andsearch engines, whether they are allowed to index a website. The numbers suggest that

about 40 percent of trafficon the Web site is caused by spiders. The main style sheetof the BSENG site was only

requested about 250 times,suggesting that almost 20 percent of clients disregard stylesheets. Though these

results can only be regarded as preliminarybecause of the small time span the log file covered,they give some

useful hints about the users of the Web sitethat should be considered during future site maintenance.In Rigi,

groups of related nodes can be collapsedinto a single “super” node (Collapse, cyan). Collapsingof nodes can

be recursive, leading to a hierarchy ofCollapse nodes. Such groupings are useful to documentthe site’s

organization. When exploring a Rigi graph,a Collapse node can be expanded to reveal the elementsthat

itcontains. The maintainer can do groupingsmanually in the Rigi editor. Alternatively, Rigi’sscripting

capabilities make it possible to develop a scriptthat (semi-)automatically performs the grouping. Figure 8shows

BSENG’s top-level graph after running the script thatwe developed for the BSENG site.4After a new version of

the BSENG site has been deployed,the maintainer first runsWeb2Rsf and then executesthe Rigi script to

visualize and assess the site’s new organization

.6. Conclusions and FutureWork

In this paper, we described our experiences with the developmentand maintenance of the BSENGWeb site,

whichis an important asset for UVic’s BSENG program. We identifiedthe different views (development,

deployment, andclient) that a Web developer has to work with. Differenttools and technologies operate on

different views. It is importantfor the developer to understand the differences betweenthese views in order to

interpret the information ofthe views correctly.Our experiences with the BSENG site show that

MacromediaDreamweaver is an effective tool for site developmentbut lacks in support for important

maintenance tasks.We discussed how the Web2Rsf extractor and the Rigireverse engineering environment can

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

be used to generate4The size of the script is 220 lines of Tcl code.client-view documentation for assessing dead links and

sitenavigability.Current reverse engineering approaches focus on the deploymentand/or client view, but neglect

the developmentview. In the future, we plan to investigate reverse engineeringsupport for the developer view by

extending existingcommercial Web development tools such as Dreamweaver,GoLive, andWebSphere with

reverse engineering functionality.Reverse engineering analyses often generate documentationthat represents

information at a higher level of abstraction.An important criterion for documentation is thatmappings between

the different abstraction levels must bepreserved [28]. Mappings between abstraction levels arevertical

mappings. The views that we introduced show thatdocumentation needs to be available for all three views

andthat horizontal mappings between these documents are ofequal importance. Horizontal mappings can be

quite complexand unintuitive for the Web site developer. We plan toinvestigate tool support that will

allowsWeb site developersto effectively navigate such horizontal mappings.

Acknowledgments

Thanks to Keith Edwards and Crina-Alexandra Vasiliufor proofreading.This work has been supported by the

Natural Sciencesand Engineering Research Council of Canada (NSERC),the Consortium for Software

Engineering (CSER), and theCenter for Advanced Studies (CAS), IBM Canada Ltd

.References[1]

 J. Conallen. Modeling Web application architectures withUML. Communications of the ACM, 42(10):63–70, Oct.1999.[2]

T. Dean and Y. Chen. Design recovery of a two level system.11th International Worshop on Program

Comprehension(IWPC 2003), pages 23–32, May 2003.[3] G. A. Di Lucca, M. Di Penta, G. Antoniol, and G. Casazza.An

approach for reverse engineering of web-based applications.Eighth Working Conference on Reverse Engineering(WCRE

’01), pages 231–240, Oct. 2001.4] G. A. Di Lucca, A. R. Fasolino, F. Pace, P. Tramontana, andU. De Carlini. WARE: a tool

for the reverse engineering ofweb applications. Sixth European Conference on SoftwareMaintenance and Reengineering

(CSMR ’02), 2002.[5] G. A. Di Lucca, A. R. Fasolino, and P. Tramontana. Towardsa better comprehensibility of web

applications: Lessonslearned from reverse engineering experiments. 4th InternationalWorkshop on Web Site Evolution

(WSE 2002), pages33–42, Oct. 2002.[6] D. Eichmann. Evolving an engineered web. 1st InternationalWorkshop on Web Site

Evolution (WSE ’99), Oct.1999.[7] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis,H. A.M¨uller, J.

Mylopolous, S. G. Perlegut, M. Stanley, andK. Wong. The software bookshelf. IBM Systems Journal,36(4), 1997.[8] F.

Fraternali. Tools and approaches for developing dataintensiveweb applications: A survey. ACM Computing

Surveys,31(3):227–263, March 1999.[9] A. E. Hassan and R. C. Holt. Towards a better understandingof web applications.

3rd InternationalWorkshop onWeb SiteEvolution (WSE 2001), pages 112–116, Nov. 2001.[10] R. Holt. TA: The tuple-

attribute language.http://plg2.math.uwaterloo.ca/˜holt/papers/ta-intro.html, 1997.[11] F.

Lanubile and T. Mallardo. Finding function clones inweb applications. Seventh Conference on Software Maintenanceand

Reengineering (CSMR 2003), pages 379–386,Mar. 2003.[12] P. K. Linos, E. T. Ososanya, and H. Natarajan.

Maintenancesupport for web sites: A case study. 3rd International Workshopon Web Site Evolution (WSE 2001), pages 70–

76, Nov.2001.[13] J. Martin and L. Martin. Web site maintenance withsoftware-engineering tools. 3rd International

Workshop onWeb Site Evolution (WSE 2001), pages 126–131, Nov. 2001.[14] J. Nielsen. Alertbox for June 15: Top ten

mistakes of webmanagement. useit.com, 1997. http://www.useit.com/alertbox/9706b.html.[15] J. Nielsen.

Alertbox for May 2: ”top ten mistakes” revisitedthree years later. useit.com, 1999.

http://www.useit.com/alertbox/990502.html.[16] S. C. North and E. Koutsofios. Applications of graph

visualization.Graphics Interface ’94, pages 235–245, 1994.[17] J. Offutt. Quality attributes of web software

applications.IEEE Software, 19(2):25–32, Mar./Apr. 2002.[18] R. S. Pressman. What a tangled web we weave. IEEE

Software,17(1):18–21, Jan./Feb. 2000.[19] F. Ricca and P. Tonella.Web site analysis: Structure and evolution.International

Conference on Software Maintenance(ICSM ’00), pages 76–86, Oct. 2000.[20] F. Ricca and P. Tonella. Understanding and

restructuringweb sites with ReWeb. IEEE MultiMedia, 8(2):40–51, Apr.–June 2001.[21] L. Schmeiser.Web site evolution:

Design and developing forthe future. 1st InternationalWorkshop onWeb Site Evolution(WSE ’99), Oct. 1999.22] M. Taylor,

J. McWilliam, J. Sheehan, and A. Mulhaney.Maintenance issues in the Web site development process.Journal of Software

Maintenance and Evolution: Researchand Practice, 14(2):109–122, Mar./Apr. 2002.[23] S. Tilley and S. Huang. Evaluating

the reverse engineeringcapabilities of web tools for understanding site contentand structure: A case study. 23rd International

Conferenceon Software Engineering (ICSE 2001), pages 514–523, May2001.[24] S. R. Tilley. Domain-retargetable reverse

engineering II:Personalized user interfaces. 1994 International Conferenceon Software Maintenance (ICSM ’94), pages

336–342, Sept.1994.[25] S. R. Tilley, H. A. M¨uller, M. J. Whitney, and K. Wong.Domain-retargetable reverse engineering.

Conference onSoftware Maintenance (CSM ’93), pages 142–151, Sept.1993.[26] B. Toeter. Lexical scanners for 4GL-

source maintenance ofa corporate web site. 2nd International Workshop on WebSite Evolution (WSE 2000), pages 51–56,

Mar. 2000.[27] A. van Deursen, P. Klint, and J. Visser. Domain-specificlanguages: An annotated bibliography. ACM

SIGPLAN Notices,35(6):26–36, June 2000.[28] A. van Deursen and T. Kuipers. Building documentationgenerators.

JuniKhyat (UGC Care Group I Listed Journal)
ISSN: 2278-4632 Vol-07 Issue2-02 2017

Copyright @ 2017 Authors

International Conference on Software Maintenance(ICSM ’99), pages 40–49, Aug. 1999.[29] P. Warren, C. Boldyreff, and

M. Munro. The evolution ofwebsites. 7th International Workshop on Program Comprehension(IWPC ’99), pages 178–185,

1999.Proceedings of the Fifth IEEE International Workshop on Web Site Evolution (WSE’03)0-7695-2016-2/03 $17.00 © 2003

IEEEView publication

