A Refinement of an Lp Inequality for a Polynomial with Restrictions on Zeros

M A Shah¹, Aijaz Ahmad², P P Singh²

¹Department of Mathematics Government College of Engineering and Technology, Safapora, Ganderbal e-mail: mushtaqa022@gmail.com

²Department of Mathematics, J.S. University, Shikohabad(Firozabad), U.P, India. e-mail: drppsingh0508@gmail.com, aiju.aijaz117@gmail.com

Abstract

If Pn denotes a class of polynomials of degree n, then for $P/inPn$, the Lp analogue of Bernstein's inequality was proved by Zygmund. In fact, he proved that

 $||P'||_p \le n ||P||_p$, for $p > 0$.

In literature, so many generalizations and refinements of this result exists. Recently K Krishnadas and B Chanam [10,Theorem 1] proved a generalisation of above result. In this paper we prove a refinement of above result which in turn provides a generalization of several other results.

Mathematics Subject Classification: 30C10, 30A10, 41A17. Keywords and Phrases: Polynomials, inequalities,complex domain, zygmund inequality.

1 Introduction and statement of results

Let P_n denotes the class of polynomials $P(z) = \sum_{j=0}^n a_v z^v$ of degree n.

Page | 243 Copyright @ 2022 Author

For $P \in P_n$ define,

$$
||P||_p := \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |P(e^{i\theta})|^p d\theta \right\}^{\frac{1}{p}}, \quad p > 0
$$

$$
||P||_{\infty} := \max_{|z|=1} |P(z)|
$$

Further

$$
||P||_0 := exp\left\{\frac{1}{2\pi} \int\limits_0^{2\pi} log|P(e^{i\theta}|d\theta)\right\}
$$

If $P \in P_n$, Zygmund [18] proved that

$$
||P'||_p \le n||P||_p, \quad p > 0 \tag{1.1}
$$

Letting $p \to \infty$, we get

$$
||P'||_{\infty} \le n||P||_{\infty} \tag{1.2}
$$

Inequality (1.2) is known as Bernstein's inequality where equality occurs for $P(z) = \alpha z^n, \alpha \neq 0.$

The validity of (1.1) for $0 < p < 1$ was proved by Arestov [1]. If $P \in P_n$ such that $P(z) \neq 0$ in $|z| < 1$, then inequalities (1.2) and (1.1) can be replaced respectively by

$$
||P'||_{\infty} \le \frac{n}{2} ||P||_{\infty} \tag{1.3}
$$

and

$$
||P'||_p \le \frac{n}{||1+z||_p} ||P||_p, \quad p > 0.
$$
 (1.4)

While inequality (1.3) was conjectured by Erdös and later proved by Lax [10], inequality (1.4) was proved by Debruijn [4] for $p > 1$. Rahman and Schmeisser[14] showed that (1.4) remain true for $0 < p < 1$. On the other hand, if $p \in P_n$ has all its zeros in $|z| \leq 1$, Turan[18] proved that

$$
||P'||_{\infty} \ge \frac{n}{2} ||P||_{\infty}.
$$
\n(1.5)

Page | 244 Copyright @ 2022 Author

Both inequalities (1.3) and (1.5) attain equality for the polynomial $P(z) = \alpha + \beta z^n$, where $|\alpha| = |\beta|$.

Govil and Rahman [7] extended (1.4) into Lp version by proving that, if $P \in P_n$ has no zero in $|z| < k, k \geq 1$, then

$$
||P'||_p \le \frac{n}{||k+z||_p} ||P||_p, \quad p \ge 1
$$
\n(1.6)

Gardener and Weems [6] and Rather [14] independently proved that (1.6) also holds for $0 < p < 1$.

Also, Aziz and Rather^[2] proved that if $P \in P_n$ has no zero in $|z| < k, k \ge 1$, then for each $p > 0$

$$
||P'||_p \le \frac{n}{||\delta_{k,1} + z||_p} ||P||_p, \quad p \ge 1
$$
\n(1.7)

where $\delta_{k,1} =$ $n|a_0|k^2 + k^2|a_1|$ $n|a_0| + k^2|a_1|$

Malik[12] proved in the sense that the inequality involves integral mean of $|P(z)|$ on $|z|=1$ and extends to Lp norm. He proved that if $P \in P_n$ has all its zeros in $|z| < 1$, then for each $p > 0$.

$$
||P'||_p \ge \frac{n}{||1+z||_p} ||P||_p.
$$
\n(1.8)

As a generalisation of (1.8), Aziz and Rather [2] proved that if $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then for each $p > 0$

$$
||p'||_p \ge \frac{n}{||1+t_{k,1}z||_p} ||p||_p.
$$
\n(1.9)

and

$$
||p'||_{\infty} \ge \frac{n}{||1 + t_{k,1}z||_p} ||p||_p.
$$
\n(1.10)

where $t_{k,1} =$ $n|a_n|k^2 + |a_{n-1}|$ $n|a_n| + |a_{n-1}|$

Several improvements, generalizations and extensions of the estimates of the bounds of $\left\{ \frac{\|P'\|_{\infty}}{\|P\|_{\infty}} \right\}$ $||P||_{∞}$ \mathcal{L} under prescribed restrictions on zeros of $P(z)$ are

3

Page | 245 Copyright @ 2022 Author

available in literature. It is also interesting to check the dependence of the $\int ||P'||_{\infty}$ $||P||_{\infty}$ \mathcal{L} on the coefficients of the polynomial under consideration. In this direction Govil et al. [8] proved the following two results, where they improved (1.6) and (1.8) , and the second (1.11) by involving certain coefficients of the polynomial.

Theorem 1.1. If $P \in P_n$ has no zeros in $|z| < k, k \ge 1$, then

$$
||P'||_{\infty} \le \frac{n}{1+k} \frac{(1-|\lambda|)(1+k^2|\lambda|) + k(n-1)|\mu - \lambda^2|}{(1-|\lambda|)(1-k+k^2+k|\lambda|) + k(n-1)|\mu - \lambda^2|} ||P||_{\infty},
$$
\n(1.11)

.

where

$$
\lambda = \frac{ka_1}{na_0}
$$
 and $\mu = \frac{2k^2 a_2}{n(n-1)a_0}$

Theorem 1.2. If $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then

$$
||P'||_{\infty} \ge \frac{n}{1+k} \frac{(1-|\omega|)(1+k^2|\omega|) + k(n-1)|\gamma - \omega^2|}{(1-|\omega|)(1-k+k^2+k|\omega|) + k(n-1)|\gamma - \omega^2|} ||P||_{\infty},
$$
\n(1.12)

where

$$
\omega = \frac{\overline{a}_{n-1}}{nk\overline{a}_n} \text{ and } \gamma = \frac{2\overline{a}_{n-2}}{n(n-1)k^2\overline{a}_n}.
$$

Recently, Krishnadas and Chanam[10] proved the following two results where they extended the inequalities (1.14) and (1.15) to Lp norms.,

Theorem 1.3. If $P \in P_n$ has no zeros in $|z| < k, k \ge 1$, then for each $p > 0$

$$
||P'||_p \le \frac{n}{||C+z||_p} ||P||_p.
$$
\n(1.13)

where

$$
C = k \frac{(1 - |\lambda|)(|\lambda| + k^2) + k(n - 1)|\mu - \lambda^2|}{(1 - |\lambda|)(|\lambda|k^2 + 1) + k(n - 1)|\mu - \lambda^2|}
$$
(1.14)

$$
\lambda = \frac{ka_1}{na_0} \text{ and } \mu = \frac{2k^2 a_2}{n(n - 1)a_0}.
$$

Page | 246 Copyright @ 2022 Author

Theorem 1.4. If $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then for each $p > 0$

$$
||P'||_p \ge \frac{n}{||1 + \mathcal{D}z||_p} ||P||_p.
$$
\n(1.15)

where

$$
\mathcal{D} = k \frac{(1 - |\omega|)(|\omega| + k^2) + k(n - 1)|\gamma - \omega^2|}{(1 - |\omega|)(|\omega|k^2 + 1) + k(n - 1)|\gamma - \omega^2|} \n\omega = \frac{\overline{a}_{n-1}}{nk\overline{a}_n} \text{ and } \gamma = \frac{2\overline{a}_{n-2}}{n(n - 1)k^2\overline{a}_n}.
$$
\n(1.16)

2 Main Results

In this paper,first we obtain the following result which includes not only a refinement of Theorem 1.3 but also provides some generalization of other results.

Theorem 2.1. If $P \in P_n$ has no zeros in $|z| < k, k \ge 1$, then for each $p > 0$

$$
||P' + \beta nm z^{n-1}||_p \le \frac{n}{||C + z||_p} ||P||_p.
$$
\n(2.1)

where C is defined by (1.17) and $m = \min_{|z|=k} |P(z)|$.

Remark 2.2 If we put $m = 0$ and let $p \to \infty$ in (2.1), the Theorem 2.1 reduces to Theorem 1.1 by using the inequality (1.17).

Remark 2.3 For $m = 0$, inequality (2.1) reduces to inequality (1.16). Next, we prove the theorem as a refinement of Theorem 1.4. In fact we prove

Theorem 2.4. If $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then for each $p > 0$

$$
||P' + \beta nm z^{n-1}||_p \ge \frac{n}{||1 + \mathcal{D}z||_p} ||P||_p.
$$
 (2.2)

Page | 247 Copyright @ 2022 Author

where $\mathcal D$ is defined by (1.19)

Remark 2.5. For $m = 0$ Theorem 2.4 reduces to Theorem 1.4.

Instead of proving Theorem 2.4, we prove a more general result, from which Theorem 2.4,follows as a special case.

Theorem 2.6. If $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then for each $\delta > 0, r > 1, s > 1$ with $r^{-1} + s^{-1} = 1$.

$$
||P' + \beta nm z^{n-1}||_{sp} \ge \frac{n}{||1 + \mathcal{D}z||_{rp}} ||P||_p.
$$
 (2.3)

where $\mathcal D$ is defined by (1.19).

Remark 2.7. Put $r = 0$ or $s = 0$, we obtain Theorem 2.4.

3 Lemmas

In this section we present some lemmas which will help us to prove our results.

Lemma 3.1. If $P \in P_n$ has no zeros in $|z| < k, k \ge 1$, then

$$
C|P'(z)| \le |Q'(z)|
$$

\nand
$$
Q(z) = z^n P(\frac{1}{z})
$$
\n(3.1)

where C is defined by (1.17) $P(P)$ $\frac{1}{z}$)

Above Lemma 3.1 is due to Govil et al.[8]. By applying Lemma (3.1.) to the polynomial $F(z) = P(z) + m\beta z^n$, we immediately get the following result.

Lemma 3.2. If $P \in P_n$ has no zeros in $|z| < k, k \ge 1$, then for any complex number β with $|\beta| \leq 1$,

$$
C|P'(z) + \beta nm z^{n-1}| \le |Q'(z)| \tag{3.2}
$$

where C is defined by (1.17) and $m = \min_{|z|=k} |P(z)|$.

Lemma 3.3. If $P \in P_n$ has all its zeros in $|z| \leq k, k \leq 1$, then on $|z| = 1$

 \overline{a}

$$
|Q'(z)| \le \mathcal{D}|P'(z) + nm\beta z^{n-1}| \tag{3.3}
$$

Page | 248 Copyright @ 2022 Author

where $\mathcal D$ is defined by (1.19).

Proof of Lemma 3.3. Since P(z) has all its zeros in $|z| \leq k, k \leq 1$, then the polynomial $Q(z) = z^n \overline{P}(\frac{1}{z})$ z) has no zeros in $|z| < \frac{1}{l}$ k , 1 k ≥ 1 . Thus aapplying Lemma 3.2 to the polynomial $Q(z)$, we have

$$
|Q'(z)| \le k \frac{(1-|\omega|)(|\frac{1}{k^2}\omega|+1) + \frac{1}{k}(n-1)|\gamma - \omega^2|}{(1-|\omega|)(|\omega| + k^2) + \frac{1}{k}(n-1)|\gamma - \omega^2|} |P'(z) + nm\beta z^{n-1}|
$$

$$
\omega = \frac{1/k}{n} \frac{\overline{a}_{n-1}}{\overline{a}_n} = \frac{\overline{a}_{n-1}}{nk \overline{a}_n} \text{ and } \gamma = \frac{2/k^2}{n(n-1)k^2} \frac{\overline{a}_{n-2}}{\overline{a}_n} = \frac{2\overline{a}_{n-2}}{n(n-1)k^2 \overline{a}_n}.
$$
\nThen,

hen,

$$
|Q'(z)| \le k \frac{(1-|\omega|)(|\omega|+k^2) + k(n-1)|\gamma - \omega^2|}{(1-|\omega|)(|\omega|k^2+1) + k(n-1)|\gamma - \omega^2|} |P'(z) + nm\beta z^{n-1}|
$$

which proves Lemma 3.3.

Lemma 3.4. If $P \in P_n$, then for each α , $0 \leq \alpha < 2\pi$ and $p > 0$

$$
\int_0^{2\pi} \int_0^{2\pi} |Q'(e^{i\theta}) + e^{i\alpha} P'(e^{i\theta})|^p d\theta d\alpha \le 2\pi n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta \tag{3.4}
$$

The above lemma is due to Aziz [2]

Lemma 3.5. If $P \in P_n$, then for each α , $0 \leq \alpha < 2\pi$, $p > 0$ and for any complex number β with $|\beta| \leq 1$,

$$
\int_0^{2\pi} \int_0^{2\pi} |Q'(e^{i\theta}) + e^{i\alpha} \left\{ P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right\} |^p d\theta d\alpha \le 2\pi n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta
$$
\n(3.5)

where $m = \min_{|z|=k} |P(z)|$.

Proof of Lemma 3.5. By applying Lemma (3.4) to the polynomial $F(z) = P(z) + m\beta z^n$, we can easily get the proof of Lemma 3.5.

Lemma 3.6. Let z be any complex and independent of α , where α is any real, then for $p > 0$

Page | 249 Copyright @ 2022 Author

$$
\int_0^{2\pi} |1 + ze^{i\alpha}|^p d\alpha = \int_0^{2\pi} |e^{i\alpha} + |z||^p d\alpha \tag{3.6}
$$

Lemma 3.6 is due to Gardner and Govil[5].

4 Proof of Theorems

Proof of Theorem 2.1. Since P(z) has no zeros in $|z| < k, k \ge 1$, we have by Lemma 3.2.

$$
C|P'(z) + \beta nm z^{n-1}| \le |Q'(z)| \tag{4.1}
$$

where C is defined by (1.17) and $m = \min_{|z|=k} |P(z)|$. We have for every real α and $\mathcal{R} \geq r \geq 1$,

$$
|\mathcal{R} + e^{i\alpha}| \ge |r + e^{i\alpha}|
$$

Then, for every $p > 0$, we have

$$
\int_0^{2\pi} |\mathcal{R} + e^{i\alpha}|^p d\alpha \ge \int_0^{2\pi} |r + e^{i\alpha}|^p d\alpha \tag{4.2}
$$

For points $e^{i\theta}$, $0 \le \theta < 2\pi$, for which $P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \ne 0$, we denote $\mathcal{R} =$ $Q'(e^{i\theta})$ $P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta}$ and $r = C$, then by (4.1), we for each $p > 0$

$$
\int_0^{2\pi} \left| Q'(e^{i\theta}) + e^{i\alpha} \left\{ P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right\} \right|^p d\alpha
$$

=
$$
\left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p \int_0^{2\pi} \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta}} + e^{i\alpha} \right|^p
$$

=
$$
\left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p \int_0^{2\pi} \left| \frac{Q'(e^{i\theta})}{P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta}} \right| + e^{i\alpha} \right|^p
$$
by (3.6)
=
$$
\left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p \int_0^{2\pi} \left| R + e^{i\alpha} \right|^p
$$

$$
\geq \left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p \int_0^{2\pi} \left| r + e^{i\alpha} \right|^p
$$
by (4.2)

Page | 250 Copyright @ 2022 Author

Hence,

$$
\int_0^{2\pi} \left| Q'(e^{i\theta}) + e^{i\alpha} \left\{ P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right\} \right|^p d\alpha \ge \left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p \int_0^{2\pi} \left| C + e^{i\alpha} \right|^p
$$
\n(4.3)

for points $e^{i\theta}$, $0 \le \theta < 2\pi$, for which $P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \ne 0$. For points $e^{i\theta}$, $0 \le \theta < 2\pi$, for which $P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} = 0$, inequality (4.3) trivially holds. Hence, using (4.3) in Lemma 3.5, we obtain for each $p > 0$,

$$
\int_0^{2\pi} \left| P'(e^{i\theta}) + nm\beta e^{i(n-1)\theta} \right|^p d\theta \int_0^{2\pi} \left| C + e^{i\alpha} \right|^p \le 2\pi n^p \int_0^{2\pi} |P(e^{i\theta})|^p d\theta
$$

which is equivalent to

$$
\left\{ \int_0^{2\pi} \left| P'(e^{i\theta}) + nm \beta e^{i(n-1)\theta} \right|^p d\theta \right\}^{\frac{1}{p}} \le n \left\{ \frac{1}{2\pi} \int_0^{2\pi} \left| C + e^{i\alpha} \right|^p d\alpha \right\}^{-\frac{1}{p}} \left\{ \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta \right\}^{\frac{1}{p}} \tag{4.4}
$$

from which the desired conclusion of Theorem 2.1 follows.

Proof of Theorem 2.6. Since P(z) has all its zeros in $|z| \leq k, k \leq 1, P(z)$ also has all its zeros in $|z| \leq k, k \leq 1$. Hence, by Gauss-Lucas Theorem, the polynomial

$$
z^{n-1} \overline{P(\frac{1}{\overline{z}})} = nQ(z) - zQ'(z)
$$
 (4.5)

has all its zeros in $|z| \geq \frac{1}{l}$ k , 1 k \geq 1. Further, since P(z) has all its zeros in $|z| \leq k, k \leq 1$, we have by Lemma 3.3.

$$
|Q'(z)| \le \mathcal{D}|P'(z) + nm\beta z^{n-1}|
$$

= $\mathcal{D}\{|P'(z)| + tmm\}$ for $|z| = 1$. (4.6)

where $\mathcal D$ is defined by (1.19) and $|\beta|=t$. For $|z|=1$, we also have

$$
|P'(z) = |nQ(z) - zQ'(z)|.
$$
 (4.7)

Page | 251 Copyright @ 2022 Author

Using (4.7) in (4.6), we have on $|z|=1$

$$
|Q'(z)| \le \mathcal{D}\left\{|nQ(z) - zQ'(z)| + \operatorname{tnm}\right\} \tag{4.8}
$$

Thus, in view of (4.5) and (4.8) , the function

$$
\phi(z) = \frac{zQ'(z)}{\mathcal{D}\left\{|nQ(z) - zQ'(z)| + \text{tnm}\right\}}
$$

is analytic in $|z| \leq 1$, $|\phi(z)| \leq 1$ on $|z| = 1$ and $\phi(0) = 0$. Therefore, the function $1 + \mathcal{D}\phi(z)$ is subordinate to the function $1 + \mathcal{D}z$ for $|z| \leq 1$. Hence, by a well known property of subordination [9], we have for each $p > 0$

$$
\int_0^{2\pi} |1 + \mathcal{D}\phi(e^{i\theta})|^p d\theta \ge \int_0^{2\pi} |1 + \mathcal{D}e^{i\theta}|^p d\theta \tag{4.9}
$$

Now,

$$
1 + \mathcal{D}\phi(z) = 1 + \frac{zQ'(z)}{|nQ(z) - zQ'(z)| + \tan \theta} = \frac{nQ(z)}{|nQ(z) - zQ'(z)| + \tan \theta}
$$

which implies for $|z|=1$,

$$
|nQ(z)| = |1 + D\phi(z)|| \, |nQ(z) - zQ'(z)| + \text{tnm}
$$

= |1 + D\phi(z)|| |P'(z)| + \text{tnm} \quad \text{by} \quad (4.7)

Since $|P(z)| = |Q(z)|$ on $|z| = 1$, we have from the preceding inequality

$$
n|P(z)| = |1 + D\phi(z)|| \, |P'(z)| + \tan \quad \text{on} \quad |z| = 1 \tag{4.10}
$$

Then for each $p > 0$ and $0 \le \theta < 2\pi$, we have

n p Z ²^π 0 |P(e iθ)| p dθ = Z ²^π 0 |1 + Dφ(e iθ)| p P 0 (e iθ) ⁺ tnm ^p dθ

Applying Holder's inequality to the above inequality, we have for $r > 1, s > 1$ with $r^{-1} + s^{-1} = 1$ and for each $p > 0$

$$
n^p \int_0^{2\pi} \left| P(e^{i\theta}) \right|^p d\theta \le \left\{ \int_0^{2\pi} \left| 1 + \mathcal{D}\phi(e^{i\theta}) \right|^{rp} d\theta \right\}^{\frac{1}{r}} \left\{ \int_0^{2\pi} \left\{ \left| P'(e^{i\theta}) \right| + \tan \right\}^{sp} d\theta \right\}^{\frac{1}{s}}
$$

Page | 252 Copyright @ 2022 Author

which implies

$$
n\left\{\int_0^{2\pi} |P(e^{i\theta})|^p d\theta\right\}^{\frac{1}{p}} \le \left\{\int_0^{2\pi} \left|1+\mathcal{D}\phi(e^{i\theta})\right|^{rp} d\theta\right\}^{\frac{1}{pr}} \left\{\int_0^{2\pi} \left\{|P'(e^{i\theta})| + \tan\right\}^{sp} d\theta\right\}^{\frac{1}{sp}}
$$

using (4.9) in the above inequality , we have

$$
n\left\{\int_0^{2\pi} |P(e^{i\theta})|^p d\theta\right\}^{\frac{1}{p}} \le \left\{\int_0^{2\pi} \left|1+\mathcal{D}e^{i\theta}\right|^{rp} d\theta\right\}^{\frac{1}{pr}} \left\{\int_0^{2\pi} \left\{|P'(e^{i\theta})| + \ln m\right\}^{sp} d\theta\right\}^{\frac{1}{sp}}
$$

by choosing argument of β as in the proof of Theorem 2.4, we get the above inequality as

$$
n\left\{\int_0^{2\pi} |P(e^{i\theta})|^p d\theta\right\}^{\frac{1}{p}} \le \left\{\int_0^{2\pi} \left|1+\mathcal{D}e^{i\theta}\right|^{rp} d\theta\right\}^{\frac{1}{pr}} \left\{\int_0^{2\pi} \left|P'(e^{i\theta})+\beta nme^{i(n-1)\theta}\right|^{sp} d\theta\right\}^{\frac{1}{sp}}
$$

which is the desired conclusion of the theorem.

References

- [1] V. V. Arestov, On inequalities for trigonometric polynomials and their derivative, IZV. Akad. Nauk. SSSR. Ser. Math., 45 (1981), 3-22.
- [2] . Aziz and N.A. Rather, Some Zygmund type Lq inequalities for polynomials, J. Math. Anal. Appl., 289 (2004), 14-29.
- [3] . Bernstein, Lecons sur les proprietes extremales et la meilleure approx- imation desfonctions analytiques dune variable reelle, Gauthier Villars, Paris (1926).
- [4] .G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc., 50 (1947), 1265-1272; Indag. Math., 9 (1947), 591-598.
- [5] .B. Gardner and N.K. Govil, An Lq inequality for a polynomial and its derivative, J. Math. Anal. Appl., 194 (1995), 720-726.
- [6] . Gardner and A. Weems, A Bernstein-type Lp inequality for a certain class of polynomials, J. Math. Anal. Appl., 219 (1998), 472-478.

Page | 253 Copyright @ 2022 Author

- [7] .K. Govil and Q.I. Rahman, Functions of exponential type not vanishing in a half-plane and related polynomials, Trans. Amer. Math. Soc., 137 (1969), 501-517.
- [8] .K. Govil, Q.I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois J. of Math., 23, No 2 (1979), 319-329.
- [9] . Hille, Analytic Function Theory, Vol. II, Ginn. and Company, New York, Toronto (1962).
- [10] Krishnadas and B Chanam, L^{γ} Inequalities Concerning Polynomials, International Journal of Applied Mathematics, Vol. 34, No. 5(2021) 979-994.
- [11] .D. Lax, Proof of a Conjecture of P. Erdos on the derivative of a polynomial, Bull. Amer. Math. Soc., 50 (1944), 509-513.
- [12] .A. Malik, On the derivative of a polynomial, J. London Math. Soc., (1969), 57-60.
- [13] .A.Malik, An integral mean estimate for polynomials, Proc. Amer. Math. Soc., 91 (1984), 281-284.
- [14] .I. Rahman and G. Schmeisser, Lp inequalities for polynomials, J. Approx. Theory, 53 (1998), 26-32.
- [15] .A. Rather, Extremal Properties and Location of the Zeros of Polynomi- als, PhD. Thesis, University of Kashmir (19980.
- [16] . Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publ. Co. (Reprinted in India) (1977).
- [17] .E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc., New York (1958).
- [18] . Turan, Uber die ableitung von polynomen, Compositio Math., 7 (1939), 89-95.
- [19] . Zygmund, A remark on conjugate series, Proc. London Math. Soc., 34 (1932), 392-400.